Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA.
a. Chứng minh ΔABD = ΔEBD.
b. Chứng minh BD ⊥ AE tại H. c. Qua A kẻ đường thẳng song song với BD cắt đường thẳng ED tại K. Chứng minh ΔADK cân, từ đó chứng minh D là trung điểm của EK.
d. Chứng minh KE < 2.AB.
a) xét \(\Delta\)ABD và \(\Delta\)EBD có:
BA = BE (gt)
BD chung
góc ABD = góc EBD (BD là p/g của góc ABC)
=> \(\Delta\)ABD = \(\Delta\)EBD (c.g.c)
b) xét \(\Delta\)ABH và \(\Delta\)EBH có:
BA = BE (gt)
góc ABD = góc EBD (BD là p/g của góc ABC)
BH chung
=> \(\Delta\)ABH = \(\Delta\)EBH (c.g.c)
=> góc BHA = góc BHE (2 góc tương ứng)
mà góc BHA + góc BHE = 180 độ (2 góc kề bù)
=> góc BHA = góc BHE = \(\dfrac{180^0}{2}=90^0\)
=> BD \(\perp\) AE