Bài 9: Tính chất ba đường cao của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhã Pham

Cho tam giác ABC vuông tại A kẻ phân giác BD của góc ABC từ d kẻ DE vuông góc với BC tại E a) Chứng minh tam giác BEA cân b) Chứng minh DB là trung trực của AE c) Chứng minh DA

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 20:03

a) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)

Suy ra: BA=BE(Hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 20:04

b) Ta có: ΔBAD=ΔBED(cmt)

nên AD=ED(Hai cạnh tương ứng)

Ta có: BA=BE(cmt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AD=ED(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra DB là đường trung trực của AE(đpcm)


Các câu hỏi tương tự
Hoàng Dương Lê Đức
Xem chi tiết
tham nguyen
Xem chi tiết
Lê Nhật Linh
Xem chi tiết
Tt_Cindy_tT
Xem chi tiết
Trần Thanh Trúc
Xem chi tiết
Phong
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
7E-Lê Thị Ngọc Trinh
Xem chi tiết