Sửa đề: M,N,P lần lượt là tđ của AB,BC,AC. Cm AMNP là hình chữ nhật
Xét ΔABC có
CP/CA=CN/CB=1/2
=>NP//AB và NP=1/2AB
=>NP//AM và NP=AM
=>AMNP là hình bình hành
mà góc MAP=90 độ
nên AMNP là hình chữ nhật
Sửa đề: M,N,P lần lượt là tđ của AB,BC,AC. Cm AMNP là hình chữ nhật
Xét ΔABC có
CP/CA=CN/CB=1/2
=>NP//AB và NP=1/2AB
=>NP//AM và NP=AM
=>AMNP là hình bình hành
mà góc MAP=90 độ
nên AMNP là hình chữ nhật
Cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABC'D và ACEF. Gọi Q, N lần lượt là giao điểm các đường chéo của ABC'D và ACEF; M, P lần lượt là trung điểm BC và DF. Chứng minh rằng tứ giác MNPQ là hình vuông
cho tam giác ABC. Dựng ra phía ngoài tam giác các hình vuông ABDE và ACFG. Gọi Q,N lần lượt là giao điểm các đường chéo của hình vuông ABDE và hình vuông ACFG; gọi M,P lần lượt là trung điểm BC và EG. CMR tứ giác MNPQ là hình vuông
cho tam giác ABC vuông tại A có đường cao AH gọi D,E lần lượt là chân đường vuông góc hạ từ H xuống AB,AC
a, cm tứ giác ADHE là hình chữ nhật
b, M là trung điểm của HC cm tam giác DEM là tam giác vuông
c tam giác ABC phải có điều kiện gì để DE=2EM
Cho tam giac ABC . Bên ngoài tam giac ABC , dựng các hình vuông ABMN và BCQP. Gọi D, E, G, H lần lượt là trung điểm của AC, BN, MP, BQ. Chứng minh rằng tứ giác DEGH là hình vuông.
Bai 2. Cho ABC là tam giác vuông cân tại A, trung tuyến AM. Gọi K là điểm đối xứng của M qua AC, H là điểm đối xứng của M qua AB
a) Các tứ giác AMCK, AMBH là hình gì? Tại sao?
b) Gọi I là trung điểm của AC, F là trung điểm của AB và MH. Chứng minh rằng tứ giác AIMF là hình vuông
cho hình bình hành abcd có ab = 2.ad. gọi m, n lần lượt là trung điểm của ab và cd. a) chứng minh tứ giác bmdn là hình bình hành. b) tia dm cắt cb tại i. tứ giác dnbi là hình gì ? vì sao ? c) gọi k là giao điểm của db và ni. chứng minh m, k, c thẳng hàng.
Cho hình chữ nhật ABCD có AB = 10cm và AD = 5cm. Gọi P, Q lần lượt là trung điểm của AB, CD.
1. Chứng minh tứ giác APQD và PBCQ là hình vuông.
2. Gọi H là giao điểm của AQ và DP. Gọi K là giao điểm của CP và BQ. Chứng minh PHQK là hình vuông.