Cho tam giác ABC vuông tại A. Gọi E là trung điểm của cạnh BC. Trên tia đối
của tia EA lấy điểm D sao cho ED = EA.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b) Gọi N là trung điểm của cạnh AC và F là điểm đối xứng của E qua N.
Chứng minh tứ giác AECF là hình thoi.
c) Gọi M là trung điểm của cạnh AB và I là trung điểm của đoạn thẳng ME.
Chứng minh ba điểm B, I, N thẳng hàng.
a: Xét tứ giác ABDC có
E là trung điểm của đường chéo BC
E là trung điểm của đường chéo AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến ứng với cạnh huyền BC
nên AE=BE=CE
Xét tứ giác AECF có
N là trung điểm của đường chéo FE
N là trung điểm của đường chéo AC
Do đó: AECF là hình bình hành
mà AE=CE
nên AECF là hình thoi