Bài 3: Cho tam giác ABC vuông tại A có BC = 20 cm, AC = 16 cm. Vẽ đường cao AH.
a) Chứng minh: HBA ABC; HBA HAC.
b) Chứng minh: AB2 = BH. BC; AH2 = HB.HC
c) Tính AB, AH, BH.
d) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
e*) Trên AH lấy điểm K sao cho AK = 3,6cm. Từ K kẻ đường thẳng song song với BC, cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC.
[ giúp mình nha ]
Cho tam giác ABC vuông tại A , AH là đường cao . D,E là hình chiếu vuông góc của H trên AB , AC .
a, Chứng mình : Tam giác ABH đồng dạng CAH
b, Chứng minh : AD.AB=AE.AC-AH
c, Chứng minh : Đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE
( Đề thi HK II năm học 2018_2019) Cho tam giác nhọn ABC (AB < AC), đường cao AH. a) Vẽ HD song song AC (D thuộc AB). Giả sử BD = 4 cm, BH = AD = 6 cm. Tính HC. b) Kẻ HE vuông góc với AC tại E. Chứng minh: AHE ∽ ACH, suy ra AH2 = AE.AC. c) Kẻ HF vuông góc với AB tại F. Chứng minh AEF = ABC
cho tam giá ABC vuông A đường cao AH. D,E lần lượt là hình chiếu của H trên AB và AC Bạn đã gửi a) cm tam giác HAC ĐỒNG GIẠNG tam giác ACB.
b cho AB=3cm; AC=4cm, tính BC,AH,BH.
c) chứng minh AD.AB=AF.AC.
d) AH^4=BD.BA.CE.CA
help vẽ hình nữa nha
Cho tam giác ABC có , AB=9cm, AC=12cm, đường cao AH.
a) Tính BC, AH, BH.
b) Gọi M là trung điểm của BC, kẻ Mx BC tại M, Mx cắt BA tại D, cắt AC tại E. Chứng minh △BMD BAC.
c) Tính HM, AD d)Chứng minh BE DC.
Cho
ΔABC∆ABC
vuông tại A có phân giác BD, AB = 6 cm, AC = 8cm. Đường thẳng vuông góc với AC tại D cắt BC ở E.
a) Tính AD? DC?
b) Chứng minh rằng
Δ CED ∆ CED
đồng dạng với
Δ CBA∆ CBA
?
c) Kẻ DF // BC (F nằm trên BA). Chứng minh rằng
cho tam giác ABC vuông ở A kẻ đừng cao AH và đường phân giác BD
a) chứng minh tam giác AHB đồng giạng với tam giác ABC
b) tính AD,DC . Biết AB=6 , AC=8
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh rằng: Δ AEF Δ ABC. b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF? c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
giúp mình câu c với ạ
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC