\(\widehat{DAH}=90^0-\widehat{AHD}=\widehat{BHD}\).
\(\widehat{HAE}=90^0-\widehat{AHE}=\widehat{CHE}\).
-△AHD và △HBD có: \(\widehat{DAH}=\widehat{DHB};\widehat{ADH}=\widehat{BDH}=90^0\).
\(\Rightarrow\)△AHD∼△HBD (g-g) \(\Rightarrow\dfrac{AD}{HD}=\dfrac{HD}{BD}\Rightarrow HD^2=AD.BD\).
-△AHE và △HCE có: \(\widehat{HAE}=\widehat{CHE};\widehat{AEH}=\widehat{HEC}=90^0\).
\(\Rightarrow\)△AHE∼△HCE (g-g) \(\Rightarrow\dfrac{AE}{HE}=\dfrac{HE}{CE}\Rightarrow HE^2=AE.CE\)
\(\Rightarrow HD^2+HE^2=AD.BD+AE.CE\left(1\right)\).
-Tứ giác ADHE có: \(\widehat{ADH}=\widehat{DAE}=\widehat{AEH}=90^0\)
\(\Rightarrow\)ADHE là hình chữ nhật nên △DHE vuông tại H, \(AH=DE\)
\(\Rightarrow HD^2+HE^2=DE^2=AH^2\left(2\right)\)
-Từ (1), (2) suy ra: \(AH^2=AD.BD+AE.CE\)