Ôn tập: Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vũ thùy dương

Cho tam giác ABC vuông tại A đường cao AH kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E Chứng minh AH.AH = AD.DB + AE.EC

vũ thùy dương
3 tháng 5 2022 lúc 20:56

mọi người giúp em dùm cái ạ -_-

Trần Tuấn Hoàng
3 tháng 5 2022 lúc 21:19

\(\widehat{DAH}=90^0-\widehat{AHD}=\widehat{BHD}\).

\(\widehat{HAE}=90^0-\widehat{AHE}=\widehat{CHE}\).

-△AHD và △HBD có: \(\widehat{DAH}=\widehat{DHB};\widehat{ADH}=\widehat{BDH}=90^0\).

\(\Rightarrow\)△AHD∼△HBD (g-g) \(\Rightarrow\dfrac{AD}{HD}=\dfrac{HD}{BD}\Rightarrow HD^2=AD.BD\).

-△AHE và △HCE có: \(\widehat{HAE}=\widehat{CHE};\widehat{AEH}=\widehat{HEC}=90^0\).

\(\Rightarrow\)△AHE∼△HCE (g-g) \(\Rightarrow\dfrac{AE}{HE}=\dfrac{HE}{CE}\Rightarrow HE^2=AE.CE\)

\(\Rightarrow HD^2+HE^2=AD.BD+AE.CE\left(1\right)\).

-Tứ giác ADHE có: \(\widehat{ADH}=\widehat{DAE}=\widehat{AEH}=90^0\)

\(\Rightarrow\)ADHE là hình chữ nhật nên △DHE vuông tại H, \(AH=DE\)

\(\Rightarrow HD^2+HE^2=DE^2=AH^2\left(2\right)\)

-Từ (1), (2) suy ra: \(AH^2=AD.BD+AE.CE\)


Các câu hỏi tương tự
Nguyễn Quang Bảo
Xem chi tiết
Thương Lê
Xem chi tiết
Thanh Vũ
Xem chi tiết
ภ丶гєєรє❄
Xem chi tiết
An Thuý
Xem chi tiết
Lê Quỳnh Như Lớp 8/7
Xem chi tiết
ngọc trang
Xem chi tiết
kth_ahyy
Xem chi tiết
Nguyễn Huy
Xem chi tiết