Cho tam giác ABC vuông tại A có đường cao AH . Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh tứ giác AMHN là hình chữ nhật. b) Tính MN biết AH =4cm
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là chân đường vuông góc kẻ từ H đến AB, AC.
a) Chứng minh AH = DE
b) kẻ trung tuyến AM của tam giác ABC. Chứng minh góc HAB = góc MAC
c) AM vuông góc DE
Cho tam giác ABC vuông tại A lấy D trên BC.Gọi M,N theo thứ tự là hình chiếu của AB và AC.a)Chứng minh MN=AD.b)Kẻ đường cao AH của tam giác ABC.Chứng minh góc MHN=90.c)Kẻ HE vuông góc AB,HF vuông góc AC,qua A kẻ đường vuông góc với EF cắt BC tại K.Chứng minh K là trung điểm của BC
1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.
4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;
b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.
Cho tam giác ABC vuông tại A, đường cao Ah và trung tuyến AM. Vẽ HD ⊥ AB và HE ⊥ AC. Chứng minh
a) AH=DE
b) AM ⊥ DE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I,K theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Góc IHK = 90 độ
b) Chu vi tam giác IHK = nửa chu vi tam giác ABC
Cho tam giác ABC vuông tại A, điểm D thuộc cạnh BC. Kẻ DM vuông góc với AB(MAB) Kẻ DN vuông góc với AC(MAC). Kẻ đường cao AH của tam giác ABC.b)Tính số đo góc MHN
Cho tam giác ABC vuông tại A đường cao AH kẻ HB vuông góc với AB,HQ vuông góc với AC Gọi I là trung điểm của HB K là trung điểm của HC.Ah cắt BC tại O a) CM tứ giác APHQ là hình chữ nhật B)CM tam giác KQH là tam giác cân.
Cho tam giác ABC vuông tại A có AH là đường cao , đường trung tuyến AM . qua H kẻ đường thẳng song song với AB và AC ,lần lượt cắt AC ở P và AB ở D . DP cắt AH ở O và AM ở Q
a)chứng minh AH=DP
b) tam giác MAC là tam giác j ? Vì sao ?
C)chứng minh tam giác APQ vuông ở Q