Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C' cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I
a) Chứng minh ba điểm I, J, K thẳng hàng
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF)
Trong mặt phẳng \(\left(\alpha\right)\) cho tam giác ABC. Từ ba đỉnh của tam giác này ta kẻ các nửa đường thẳng song song cùng chiều Ax, By, Cz không nằm trong \(\left(\alpha\right)\). Trên Ax lấy đoạn AA'=a, trên By lấy BB'=b, trên Cz lấy đoạn CC'=a
a) Gọi I, J và K lần lượt là các giao điểm B'C'. C'A' và A'B' với \(\left(\alpha\right)\).
Chứng minh rằng \(\dfrac{IB}{IC}.\dfrac{JC}{JA}.\dfrac{KA}{KB}=1\)
b) Gọi G và G' lần lượt là trọng tâm của các tam giác ABC và A'B'C'
Chứng minh GG' // AA'
c) Tính GG' theo a, b, c ?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm AB, SC.
a) Tìm giao tuyến của hai mặt phẳng (ABN) và (SCD).
b) Chứng minh BN // (SDM).
c) Tìm giao điểm của các đường thẳng AN và MN với mặt phẳng (SBD).
Bài 1:Cho tam giác ABC vuông tại A, đường phan giác của góc B cắt AC tại E. Vẽ EH vuông góc BC (H thuộc BC). Gọi K là giao điểm của BA và HE. C/m: a) Tam giác ABE = tam giác HBE.
b) BE là đường trung trực của đoạn thẳng AH
c) EC= EK
Bài2: Cho tam giác ABC can tại A với đường trung tuyến AH.
a) C/M: tam giác AHB = tam giác AHC
B) góc AHB= góc AHC= 90 độ
c) Biết AB = AC = 13cm, BC = 10 cm. Tính độ dài đường trung tuyến AH.
HELP ME!!!!!!
Từ các đỉnh của tam giác ABC ta kẻ các đoạn thẳng AA',BB',CC' song song cùng chiều, bằng nhau và không nằm trong mặt phẳng của tam giác. Gọi I, G và K lần lượt là trọng tâm của các tam giác ABC, ACC' và A'B'C'
a) Chứng minh (IGK) // (BB'C'C)
b) Chứng minh rằng (A'GK) // (AIB')
Cho hình chóp tam giác S.ABC. Gọi M, N lần lượt là trung điểm của AC, BC và G là trọng tâm tam giác (ABD).
a) Tìm giao tuyến giữa PN và (BDI) với I là trung điểm của NC.
b) TÌm thiết diện hình chóp cắt bởi (CMP)
Cho hình chóp S.ABCD, có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA, SD. a) Chứng minh MN // (ABCD). b) Chứng minh SB // (OMN). c) Chứng minh (OMN) // (SBC). d) Gọi P, Q lần lượt là trung điểm của AB, ON. Chứng minh PQ // (SBC).
Hình chóp SABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của cạnh SC, SD. Chứng minh MN//(SAB). Gọi mặt phẳng alpha là mặt phẳng chứa AM và song song với BD, mặt phẳng alpha cắt SB tại E. S1, S2 là kí hiệu cho diện tích của các tam giác SME và SBC. Tính tỉ số S1/S2