\(K=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a. Rút gọn K
b.Tìm x để K<1
Bài 2 : cho tam giác ABC vuông tại A có đường cao AH . Vẽ HD vuông góc với AB tại D , HE vuông góc với AC tại E
a,Biết AB =8 , AC= 10. Tính AH, HB ,HC
b, CM \(^{\dfrac{AD}{BD}=\dfrac{AH^2}{BH^2}}\)
c , CM \(AH^3\) = BD . CE. BC
Cho tam giác đều ABC cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD = 20 cm. Đường trung trực của AD cắt các cạnh AB, AC lần lượt tại E và F. Kẻ DI vuông góc với AB tại I, DK vuông góc với AC tại K.
a) Tính độ dài các đoạn thẳng DI, BI, DK, KC.
b) Tính độ dài các cạnh của tam giác DEF.
cho tam giác ABC vuông tại A có AH là dường cao CH=9,6cm
a)tính BC,BH,AB,AH yinh1 diện tích tam giác ABC
b)đường thẳng đi qua (song song với AB cắt tia AH tại K
CM tam giác ACK vuông tính CK,AK
c)CM :tam giác ABH và tam giác KCH
D)CM BC .CH =AH.AK
e)cho biết tứ giác ABKC là hình gì?tính chu vi và diện tích tứ giác ABKC
Cho tam giác ABC vuông tại A, biết , BC = 10 cm .
a)Giải tam giác vuông ABC ?
b)Vẽ đường cao AH, đường trung tuyến AM . Tính độ dài AH, HM?
Cho tam giác ABC vuông tại A (AB >AC )đường tròn tâm O đường kính AB cắt BC tại H. Gọi K là trung điểm của AC a,Chứng minh AH là đường cao của tam giác ABC b, Chứng minh tam giác KOH = tam giác KAO . Suy ra số đo KHI
Cho tam giác ABC đều, đường cao AD, trực tâm H. M là điểm bất kỳ trên cạnh BC. Gọi E, F thứ tự là hình chiếu của M trên AB và AC. Gọi I là trung điểm của AM. ID cắt EF tại K. a) DEIF là hình gì? b) CM: M, K, H thẳng hàng. c) Xác định vị trí của M trên BC để EF đạt GTNN. d) Tìm GTNN của SDEIF biết tam giác ABC có cạnh bằng a. e) Tìm quỹ tích điểm K
help me giải vs
1> cho tam giác ABC vuông tại A , đường cao AH , AB=15cm , AC = 20cm . Gọi E là điểm đối xứng với B qua H. Vẽ hình bình hành ADCE . Tính SABCD ?
2> Cho hình thang ABCD, A=D=90 độ, AC vuông góc với BD viết AD = 3\(\sqrt{13}\)
OD = 9cm , ( O là giao điểm của AC và BD ) a) Tính AC , BD , AO b) Qua O vẽ đường thẳng song song với đáy cắt AD và BC tại M và N . Tính MNCho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E là chân các đường cao hạ từ H xuống AB, AC. CMR:
a, AD.AB = AE.AC
b, AM vuông góc với DE
c, \(\dfrac{CE}{BD} = (\dfrac{CA}{AB})^2\)
Cho tam giác ABC vuông tại 4, có đường cao AH. Từ H kẻ HE vuông góc với ARURE, ke HF vuông góc với AC tại F. | Cho biết AB = 3cn , hat ACB = 30 deg Tính độ dài các đoạn 4C, HAI b. Chứng minh. BE BA+CFC4+2HF HC = B * C ^ 2 c Biết HC-6 cm. Tính giá trị lớn nhất của diện tích tứ giác AEHF.