Bài 2: Cho tam giác ABC vuông tại A có AB=12cm AC=16cm ve đường cao AH A) CM tam giác ABC đồng dạng tam giác HBA B) tính Bc, AH, BH C) Trên AH lấy điểm K sao cho AK=3,6cm. Từ K đường thẳng // BC cắt Ab và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC
Cho tam giác ABC vuông tại A , AB = 15 cm ,AC = 20 cm . Kẻ đường cao AH ( H ϵ BC )
a) C/m ΔABC đồng dạng ΔHBA
b) Tính độ dài BC , AH ,BH ,CH
c) Vẽ đường phân giác AD của góc BAC . Tính BD , DC
cho tam giác ABC vuông tại A (AB<AC),đường ca AH(H thuộc BC).
1 CM: tam giác HBA đồng dạng tam giác ABC và BA^2=BH.BC.
2.kẻ phân giác Be cuat góc ABC(E thuộc AC ) , BE cắt AH tại I .CM tam giác HBI đồng dạng tam giác ABE.
3. CM AI=AE
Cho tam giác ABC vuông tại A , AB = 12 cm AC =16 cm ,tia phân giác của góc A cắt cạnh BC tại D ,vẽ đường cao AH
b ,chứng minh AB x AC = BC x AH
Bài 3. Cho tam giác ABC vuông tại A, có AH là đường cao.
a) Chứng minh hai tam giác ABC và ABH đồng dạng
b) Biết AB = 15 cm; BC = 25 cm. Tính độ dài BH
c) Phân giác góc HAB cắt BH tại E. Chứng minh EH. BC = EB. AC.
B1: Cho △ABC vuông tại A, AB=4,5cm, AC=6cm. Kẻ đường cao AH, đường trung tuyến AD (H và D ∈ BC)
a) CM: △HBA \(\sim\) △ABC
b) Tính AH và diện tích △ABH?
c) Kẻ các đường phân giác DE của ∠ADB và DF của ∠ADC (E ∈ AB, F ∈ AC). CM: EF // BC
B2: Một phân số có mẫu số lớn hơn tử số là 7 đơn vị. Nếu giảm tử số 5 đơn vị và tăng mẫu số 3 đơn vị thì được một phân số mới bàng \(\dfrac{1}{6}\).Tìm phân số ban đầu?
Cho tam giác ABC vuông tại A , đường cao AH .Đường phân giác củ góc ABC cắt AC tại D và cắt AH tại E A) Chứng minh tam giác ABC đồng dạng tam giácHBA và AB^2=BC.BH B) biết AB =9cm, BC= 15cm. Tính DC và AD C) gọi I là trung điểm của ED .Chứng minh : BIH=ACB Hộ mk với ạ 😢 Vẽ hình hộ mik luôn mai mik thi òi ạ Thank m.n
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm, AC = 8cm
a/ Chứng minh ∆HBA đồng dạng ∆ABC.
b/ Tính BC, AH, BH
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC
a) Chứng minh rằng ΔAEF ΔACB
b) Cho AH = 4,8cm, BC = 10 cm. Tính SAEF?
c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy