a) \(BD=BA\Rightarrow\Delta BAD\) cân tại B
\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)
Có: \(\widehat{BDA}+\widehat{DAC}=90^o\) (cùng bằng BAC = 90 độ)
\(\Rightarrow\widehat{HAD}=\widehat{DAC}\)
=> AD là tia phân giác HAC
b) \(\Delta ADH;\Delta ADK\) có:
\(\widehat{HAD}=\widehat{KAD}\)
\(\Rightarrow\Delta ADH=\Delta ADK\)
\(\Rightarrow AK=AH\)
c) Có: \(DC>KC\) (tam giác KDC vuông, cạnh DC là cạnh huyền)
\(\Rightarrow DC+BD+AK>KC+BD+AK\)
\(\Rightarrow BC+AK< AC+BD\)
d) \(\Rightarrow AB+AC>BC+AH\) (AK = AH, AB = AD)