Bn vẽ đ.p.g. của \(\widehat{ABC}\) ròi sử dụng tính chất của đ.p.d. trong \(\Delta ABC\) vs tính chất của dãy tỉ số bằng nhau nx (^~^)
Bn vẽ đ.p.g. của \(\widehat{ABC}\) ròi sử dụng tính chất của đ.p.d. trong \(\Delta ABC\) vs tính chất của dãy tỉ số bằng nhau nx (^~^)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
Tam giác ABC cân ở A; AH vuông góc với BC; BK vuông góc với CA. CMR: \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Tam giác ABC vuông ở A; AB=AC; M thuốc AC sao cho MC:MA=1:3. Kẻ đường vuông góc AC tại C cắt BM ở K; kẻ BE vuông góc với đường CK ở E
a. ABEC là hình gì?
b. CM: \(\dfrac{1}{AB^2}=\dfrac{1}{BM^2}+\dfrac{1}{BK^2}\)
Tam giác ABC vuông tại A có BC=20cm, AB=10cm
1. Giải tam giác ABC vuông và tính độ dài đường cao AH
2. Cminh: tgB, Sin B=\(\dfrac{HC}{AB}\)
3. Kẻ phân giác của góc BAC cắt BC tại I. Tính HI
Cho tam giác ABC vuông tại A (AB > AC), đường cao AH
a) Chứng minh: \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b) Biết \(\widehat{C}\) \(=60^0\), AC = 8, AB = 12. Giải tam giác HAB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC
tam giaác ABC vuông tại A, vẽ AH vuông góc BC, AB=6cm, BC=10cm
1. tính BH, AH 2.
CM \(\dfrac{BA.AC}{AB^{^2}}=\dfrac{AH}{BH}\)
Bài 6:Cho tam giác ABC vuông tại A, có đường cao AH. Cho AB = 6cm, AC = 8cm.
a) Tính AH, HB.
b) Vẽ HM vuông AB tại M, HN ^ AC tại N. Chứng minh AM.AB = AN.AC.
c) Gọi K là trungđiểm BC. Chứng minh AK vuông MN.
d) Tính \(\dfrac{S_{ANM}}{S_{ABC}}\)