a) △ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (định lí Py-ta-go).
\(\Rightarrow BC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
\(AH.BC=AB.AC=2S_{ABC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Tứ giác AEHF có: \(\widehat{EAF}=\widehat{AFH}=\widehat{AEH}=90^0\)
\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow AH=EF=4,8cm\).
b)\(S_{MNEF}=S_{MHE}+S_{NHF}+S_{HEF}=\dfrac{S_{BHE}}{2}+\dfrac{S_{HCF}}{2}+\dfrac{S_{AEHF}}{2}=\dfrac{S_{ABC}}{2}=\dfrac{AB.AC}{2}=\dfrac{6.8}{2}=24\left(cm^2\right)\)