Cho tam giác ABC cân tại A,kẻ phân giác BD của góc B,kẻ phân giác CE của góc C
1) Chứng minh BD=CE
2) Kẻ Dh vuông góc với BC,EK vuông góc với BC.Chứng minh
a)DH//EK
b)DH=EK
Cho tam giác ABC cân tại ,kẻ BD vuông góc AC,CE vuông góc AB
Cm.a)BD=CE
b)AD=AE
c)Gọi I là giao điểm BD và CE .Cm IE=ID
d)AI là p.giác
e)AI vuông góc BC
Bài:_ Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB (E thuộc AB). BD và CE cắt nhau tại I. Là Là a) Cho BC = 5cm, DC = 3cm. Tính độ dài BD. b) Chứng minh rằng BD =CE. c) thẳng AI cắt BC tại H. Chứng minh rằng AI vuông góc với BC tại H.
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE )
a)C/m AK=KB
b)C/m AD=BC
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE) a, tính góc ABC b, chứng minh tam giac AKE c, AE là đường trung trực của đoạn thẳng Ck d,chứng minh KA bằng KB e, chứng minh tam giác KBE = tam giác DBE
cho Δ ABC cân tại A (A<90o). Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E.
a) CM: ΔADE cân
b) CM: DE // BC
c) Gọi I là giao điểm của BD và CE. CM: IB=IC
d) CM: AI vuông góc với BC
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
CMR
a, I là trung điểm của DE
b, Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC