a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó:ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=2\sqrt{73}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot16}{\sqrt{73}}=\dfrac{48}{\sqrt{73}}\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó:ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=2\sqrt{73}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{3\cdot16}{\sqrt{73}}=\dfrac{48}{\sqrt{73}}\left(cm\right)\)
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
cho tam giác ABC vuông tại A có AB=3cm, BC=5cm, vẽ đường cao AH của tam giác ABC
a)CM tam giác ABC đồng dạng với tam giác HBA
b)CMR AB^2 = BH.BC. tính BH
c)Dựng đường phân giác BD của tam giác ABC cắt AH ở E. Tính EH/EA. tính EH .
d) tính diện tích tứ giác HEDC
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD
ho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. Vẽ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH.
c) Vẽ đường phân giác À của tam giác ABC (D thuộc BC). Tính BD, CD
d) Trên AH lấy điểm K sao cho AK = 3.6cm từ K kẻ đường thẳng song song với BC cắt AB tại M, cắt AC tại N.Tính diện tích tứ giác BMNC
Cho tam giác ABC vuông tại A có AB = 3cm, BC = 5cm. vẽ đường cao AH của tam giác ABC.
a) Chứng minh tg ABC đồng dạng tg HBA
b) Chứng minh AB^2=BC.BH
c) Vẽ đường phân giác BD của tg ABC cắt AH ở E. Tính EA/EA
cho tam giác ABC vuông tại A đường cao AH. chứng minh: a/ tam giác HBA đồng dạng với tam giác AHC. b/ AB2= BH. BC