Cho Tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Từ M dựng đường thẳng vuông góc với AB và AC, cắt AB và AC lần lượt tại I và K. a) Biết BC = 10cm. Tính IK và chứng minh tứ giác AIMK là hình chữ nhật. b) Trên tia MI lấy điểm E sao cho I là trung điểm ME, trên tia MK lấy điểm F sao cho K là trung điểm MF. Chứng minh K là trung điểm AC và tứ giác EMCA là hình bình hành. c) Chứng minh tứ giác AMCF là hình thoi. d) Kẻ AH ⊥ BC tại H. Giả sử IK = 2.HM. Tính số đo góc ABC
Cho tam giác ABC vuông tại A, đường trung tuyến AM kể MD//AC cách AB tại D. ME//AB cắt AC tại E. a, chứng minh tứ giác ADME là hình chữ nhật b, chứng minh DE//BC c, biết AC = 8 cm,AB = 6 cm. Tính chu vi tứ giác DECB d, tam giác ABC cần điều kiện gì để tứ giác ADME là hình vuông
Cho tam giác ABC, trung tuyến AH, N là trung điểm của AC, tia HN cắt đường thẳng đi qua điểm A và song song BC tại K. a) Chứng minh AKHB là hình bình hành. b) A,H đối xứng với nhau qua M, tia CM cắt AB tại D. Chứng minh BD= 2AD. c)Tam giác ABC cần có điều kiện gì để AKCH là hình vuông. LÀM ƠN GIÚP MÌNH VỚI!!!
Cho tam giác vuông ABC vuông tại A ( AB<AC) có đường cao AH , trung tuyến AM.Gọi E,F lần lượt là trung điểm của AB và AC
a) CMR: tứ giác HEMF là hình thang cân
b) Kẻ Ax // BC cắt tia MF tại K . CMR: tứ giác AMCK là hình thoi
c) CMR: HE vuông góc với HF
d) Chứng minh SABC = 18cm2.Tính SAMCK?
Cho tam giác ABC vuông tại A. D là trung điểm BC. Vẽ
DM vuông góc với AB tại M, DN vuông góc với AC tại N.
a) Chứng minh tứ giác AMDN là hình chữ nhật.
b) Cho AB = 5cm, AC = 12cm. Tính BC, AD, MN.
c) Trên tia ND lấy điểm K sao cho D là trung điểm NK. Chứng
minh BKCN là hình bình hành.
d) Gọi E, F là trung điểm của DM và DN. Đường thẳng AE, AF
cắt MN tại I, J. Chứng minh NI = MJ
chỉ đi mà
cho tam giác nhọn ABC (AB<AC). gọi lần lượt là trung điểm của AB,AC và BC. Kẻ AH vuông gốc với BC tại H, AH cắt DE tại M.
1) chứng minh rằng : DM/BH.
2) chứng minh rằng : M là trung điểm AH và tam giác AEH cân
3) trên tia đối của tia DH lấy điểm K sao cho DH=DK. chứng minh rằng, tứ giá DEFH lầ hình thang cân và tứ giác KACB là hình vuông.
4) giả sử AB=AF. chứng minh rằng : ba điểm K,M,F thẳng hàng
Bài 2. Cho tam giác ABC vuông tại A có , kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.
a) .
b) Chứng minh tứ giác ABCD là hình thang cân.
c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
Bài 3. Cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.
a) Chứng minh tứ giác MNDE là hình bình hành.
b) Tìm điều kiện của tam giác ABC để tứ giác MNDE là hình chữ nhật, là hình thoi.
c) Chứng minh DE + MN = BC.
Bài 4. Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc AB và HE vuông góc AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Bài 5. Cho tam giác ABC vuông tại A đường cao AH. Gọi D là điểm đối xứng với H qua AC, E là điểm đối xứng với H qua AB. Chứng minh:
a) D đối xứng với E qua A.
b) Tam giác DHE vuông.
c) Tứ giác BDEC là hình thang vuông.
d) BC = CD + BE
e) Tính độ dài đoạn thẳng ED biết AB = 6cm; AC = 8cm.
cho tam giác ABC vông tại A (AB<AC) Điểm M là trung điểm của BC Kẻ MD vuông góc với AB tại D.ME vuông góc vưới AC tại E Trên tia đối tia DM lấy điểm N sao cho DM=DN
Chứng minh tứ giác ADME là hình chữ nhật
Chứng minh tứ giác AMBN là hình thoi
Cho tam giác ABC nhọn có trục tâm H. Các đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, D thẳng hàng.
c) Chứng minh 4 điểm A, B, D, C cách đều một điểm.
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi.