cho tam giác ABC. Trên tia đối của tia BC lấy diểm D sao cho BD=AB. Trên tia đối của tia CD lấy điểm E sao cho CE=AC. Gọi H là đường vuông góc kẻ từ D đến AD, K là chân đường vuông góc kẻ từ C đến AE.
a) Chứng minh rằng HK song song với DE.
b) Tính HK, biết chu vi tam giác ABC bằng 10
Cho tam giác ABC có H là trực tâm, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại E và F, trên tia đối của tia HC lấy HD = HC. Chứng minh rằng:
1) HM // BD 2) E là trực tâm của tam giác HBD
3) DE // AC 4) EH = HF
Cho ΔABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CD lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kẻ từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song với DE
b) Tính Hk, biết chu vi ΔABC bằng 10
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC).Trên tia đối của tia HB lấy điểm D sao cho HB = HD. Kẻ DE vuông góc với AC tại E và HK vuông góc với AC tại K. Gọi M là trung điểm của DC. Chứng minh góc HEM vuông
Cho tam giác ABC (AB<AC), đường cao AH. Trên tia đối của tia HB lấy điểm D sao cho HB=HD . Kẻ DE vuông góc với AC tại E, HK vuông góc với AC tại K.
a, So sánh : KE và KA
b, CM: tam giác AHE cân tại H
c, Gọi M là trung điểm của CD. CM: góc HEM= 90 độ
Bài 1: Cho tam giác ABC vuông cân tại C. Trên AC, CB lấy lần lượt điểm D,E sao cho CD=CE. Từ D,C hạ vuông góc với AE. Các đường vuông góc này cắt AB thứ tự là K,L. C/m: KL=KB.
Bài 2: Cho tứ giác ABCD,M và N lần lượt là trung điểm của AB và CD, biết: AD cắt MN tại E, BC cắt MN tại F. Với điều kiện nào của tứ giác thì ABCD có: góc AEM=FEM
Bài 3: Cho tam giác ABC có 3 góc nhọn, các đường cao CH, BK. Gọi D Và E lần lượt là hình chiếu của B và C trên đường thẳng HK. C/m: DK=EH.
Cho tam giác ABC cân tại A, trung tuyến AD. Kẻ DH vuông góc với AC tại
H.Gọi M,I lần lượt là trung điểm của HC,HD.
1.Chứng minh: MI // BC, DM // AH
2.Chứng minh: MI vuông góc với AD.
3.Chứng minh: AI vuông góc với BC.
Cho tam giác ABC nhọn,đường cao AH.Kẻ HE vuông góc với AB,trên tia HE lấy điểm M sao cho E là trung điểm của HM.Kẻ HF vuông góc với AC ,trên tia HF lấy điểm N sao cho F là trung điểm của HN.CMR
a) tam giác AMN cân
b) EF//MN
c)Gọi I là trung điểm của MN.CMR:AI vuông góc với EF
d) góc MAN=2.BAC
Cho ∆ABC, AH là đường cao. Qua trung điểm I của BH và trung điểm K của CH dựng các đường thẳng vuông góc với BC, lần lượt cắt AB, AC tại D và E. Chứng minh a) ID // KE và ID = KE b) DE // IK và DE = IK