Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC vuông tại A có đường cao AH . Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh tứ giác AMHN là hình chữ nhật. b) Tính MN biết AH =4cm
Cho tam giác ABC vuông tại A, điểm d thuộc cạnh BC, gọi E và F lần lượt là hình chiếu của D trên AB và AC a) Chứng minh tứ giác AEDF là hình chữ nhật b) gọi I là trung điểm của EF. Chứng minh A,I,D thẳng hàng
cho tam giác abc vuông tại a , trung tuyến am , đường cao ah , trên tia am lấy điểm d sao cho am=md
a)chứng minh abdc là hình chữ nhật ?
b)gọi E và F lần lượt là chân đường vuông góc kẻ từ h xuống a và ac . chứng minh AEHF
c) C/M EF vuông góc vs Am ?
Cho tam giác ABC vuông tại A. Gọi D,E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh rằng:
a. DE//AC, DF//AB.
b. Tứ giác AEDF là hình chữ nhật.
c. Gọi M và N lần lượt là các điểm đối xứng với D qua AB và AC. Chứng minh M đối xúng với N qua A.
cho tam giác ABC nhọn (AB<AC) đường cao AH. Gọi D là trung điểm của AC, K là điểm đối xứng của H qua D
a, cm tứ giác AHCK là hình chữ nhật
b, Gọi I,E lần lượt là trung điểm của BC và AB cm tứ giác EDCI là hình bình hành
c, tứ giác EBHI là hình thang cân
d, AH cắt DE tại M, BM cắt HE tại N,AN cắt BC tại L. Gọi O là trung điểm của MI , B là điểm đối xứng của L qua N cm C,O,N thẳng hàng
Cho tam giác ABC vuông tại A (AB<AC). Lấy M,E lần lượt là trung điểm cạnh BC, kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.
a) Chứng minh ADME là hình chữ nhật
b) Chứng minh DBME là hình bình hành
c) Kẻ đường cao AH của tam giác ABC. Chứng minh DEMH là hình thang cân
Cho tam giác ABC vuông ở A, đường cao AH. Gọi M, N lần lượt là điểm đối xứng với H
Chứng minh: AM= AN
qua
AB, AC.
b) Chứng minh: M, A, N thẳng hàng.
c) Chứng minh: BMNC là hình thang
Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, vẽ đường thẳng vuông góc với BC cắt các đường thẳng AB, AC lần lượt tại N và M. gọi H và K lần lượt là trung điểm của BC và MN. Chứng minh rằng tứ giác AKDG là hình chữ nhật
Cho tam giác ABC vuông tại A, AH là đường cao ( H thuộc BC). Kẻ HE, HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).
a) Chứng minh AH = EF.
b) Gọi O là giao điểm của AH và EF, K là trung điểm của AC. Qua F kẻ đường thẳng vuông góc với EF cắt BC tại I.Chứng minh tứ giác AOIK là hình bình hành.
c) EF cắt IK tại M. Chứng minh tam giác OMI cân