a) Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
Suy ra: AH=AD
Xét ΔAHD có AH=AD
nên ΔAHD cân tại A
mà AB là đường trung trực ứng với cạnh đáy HD
nên AB là tia phân giác của \(\widehat{HAD}\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AH=AE
Xét ΔAEH có AH=AE
nên ΔAEH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HE
nên AC là tia phân giác của \(\widehat{EAH}\)
Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)
\(=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra: E,A,D thẳng hàng
mà AE=AD(=AH
nên A là trung điểm của ED