a/ Xét t/g ABC cân tại A có D là trung điểm BC
=> AD đồng thời là tia pg của t/g ABC
=> AD là pg \(\widehat{BAC}\)
Hay AD là pg \(\widehat{EAF}\)
Xét tứ giác AEDF có
\(\left\{{}\begin{matrix}\widehat{BAC}=90^o\\\widehat{AED}=90^o\\\widehat{AFD}=90^o\\AD-là-pg-\widehat{EAF}\end{matrix}\right.\)
=> Tứ giác AEDF là hình vuông
b/ Có tứ giác AEDF là hình vuông
=> DE // AF ; DE = AF (1)Có
DF ⊥ ACAB ⊥ AC=> DF // ABXét t/g ABC có
D là trung điểm AB
DF // AB (F thuộc AC)
=> F là trung điểm AC (2)(1) ; (2)
=> DE // FC ; DE = FC
=> Tứ giác EFCD là hình bình hành