Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh:\(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F theo thứ tự là hình chiếu của H trên AB, AC. Chứng minh: \(S_{AEHF}\le\dfrac{1}{2}S_{ABC}\). Dấu bằng xảy ra khi và chỉ khi tam giác ABC vuông cân tại A
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D và E thứ tự là hình chiếu của H trên AB, AC.
a) Chứng minh rằng tam giác ABC đồng dạng tam giác HBA.
b) Cho HB = 4cm, HC = 9cm. Tính AB, DE.
c) Chứng minh AD.AB = AE.AC và AM vuông góc DE.
d) Tam giác ABC phải có điều kiện gì để diện tích tam giác ADE bằng 1/3 diện tích tứ giác BDEC.
Mọi người giúp em với ak""""
Cho tam giác ABC vuông tại A, đường cao AH, phân giác BI. Qua C kẻ đường thẳng vuông góc với BI tại D. Gọi E là giao điểm của AB và CD. Gọi F là hình chiếu của D trên BE. Chứng minh: (BD/DE)^2=BF/EF
Cho tam giác ABC vuông tại A, có BC=a không đổi. Kẻ đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Cm tứ giác AEHF là hình chữ nhật
b) Gọi M là trung điểm của BH. CM: \(\widehat{MEF}=90\) độ
c) Gọi N là trung điểm của CH. Tứ giác MEFN là hình gì? Hãy chứng minh
d) Tìm điều kiện của tam giác vuông ABC để EF có độ dài lớn nhất