Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Suy ra: AM cắt DE tại trung điểm của mỗi đường
=>I là trung điểm của AM
=>KHi M di chuyển trên BC thì I di chuyển trên AM
Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Suy ra: AM cắt DE tại trung điểm của mỗi đường
=>I là trung điểm của AM
=>KHi M di chuyển trên BC thì I di chuyển trên AM
Cho \(\Delta ABC\) có M là điểm di động trên cạnh BC, I là trung điểm AM.
a) Xác định quỹ tích điểm I
b) Qua M, kẻ đường thẳng song song AB cắt AC tại E và đường thẳng song song AC cắt AB tại F. Trung điểm đoạn EF di chuyển trên đường nào?
Cho tam giác ABC vuông tại A. Lấy M là một điểm bất kì thuộc cạnh BC. Gọi MD là đường vuông góc kẻ từ M đến AB, ME là đường vuông góc kẻ từ M đến AC, O là trung điểm của DE
a) Chứng minh rằng ba điểm A, O, M thẳng hàng
b) Khi điểm M di chuyển trên cạnh BC thì điểm O di chuyển trên đường nào ?
c) Điểm M ở vị trí nào trên cạnh BC thì AM có độ dài nhỏ nhất ?
Bài 109: Cho đoạn thẳng AB và đường thẳng d song song với AB và C là điểm bất kì thuộc đường thẳng d. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, AC, AB và G là giao điểm của AM, BN.
a) Chứng minh các điểm C, G, P thẳng hàng
b) Khi C di chuyển trên đường thẳng d thì điểm G di chuyển trên đường nào?
Bài 110: Cho tam giác ABC cân tại A và M là điểm bất kì thuộc cạnh BC. Gọi D, E lần lượt là chân các đường vuông góc hạ từ M tới AB, AC. Kẻ BH ⊥ AC (H ϵ AC) và kẻ MK ⊥ BH (K ϵ BH). Chứng minh: MD = BK và MD + ME = BH
Bài 111: Cho tam giác ABC cân tại A và M là điểm di chuyển trên cạnh BC. Chứng minh tổng khoảng cách từ M tới AB và AC luôn không đổi.
Các bạn giúp mk với, mai mình nộp rồi!!!
Cho tam giác ABC vuông cân ở A. Từ điểm H tùy ý trên cạnh BC, vẽ một đường thẳng vuông góc với BC,cắt các đường thẳng AB,AC lần lượt ở I và K. Gọi E là trung điểm của BI, F là trung điểm của CK.Tìm tập hợp các điểm O là trung điểm của EF khi H di động trên BC
Cho tam giác ABC cân tại A gọi M là trung điểm của BC qua M kẻ đường thẳng song song AC cắt AB tại E song song AB cắt AC tại F gọi I là trung điểm của AM. Chứng minh: a) E,I,F thẳng hàng b) AM vuông góc EF
Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào ?
Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy. Vẽ về một phía của AB các tam giác đều AMD, BME. Trung điểm I của DE di chuyển trên đường nào ?
1. Cho đoạn thẳng AB. Kẻ tia Ax bất kì. Trên tia Ax lấy các điểm C,D,E sao cho AC=CD=DE. Kể đoạn thẳng EB. Qua C,D kẻ các đường thẳng song song với EB cắt AB lần lượt tại C',D'.Chứng minh : ÁC'=C'D'=D'B
2. Cho điểm A nằm ngoài đường thẳng d và cách d một khoảng 2cm. Lấy điểm B bất kì thuộc đường thẳng d. Gọi C là điểm thuộc tia đối của tia BA sao cho BC=BA. Khi B di chuyển trên đường thẳng d thì C di chuyển trên đường nào?
MẤY ANH CHỊ GIÚP EM VỚI! CẢM ƠN CÁC ANH CHỊ NHIỀU NHIỀU!
Cho hình chữ nhật ABCD, 2 đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc OA. BE cắt AD tại M, Qua P kẻ đường thẳng song song với BM cắt BC tại N và cắt AC tại F.
a) Chứng minh: BMDN là hình bình hành b) Chứng minh: O là trung điểm EF c) Qua E kẻ đường thẳng song song với BD cắt AD tại H, cắt CD tại I. Gọi O' là trung điểm IH. Chứng minh OO' song song DN d) Gọi K là điểm đối xứng với D qua O'. Chứng minh: K, M, B thẳng hàng