Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC,D là trung điểm của AC.
a) Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Chứng minh rằng AE song song với BC.
b) Trên tia đối của tia AB lấy điểm Fsao cho AF=AB. Chứng minh rằng góc FAC= 2 góc ABC
c) Chứng minh rằng AD song song với EF và AD = 1/2 EF
Cho tam giác ABC, có AB<AC. Kẻ tia phân giác AD của góc BAC ( D thuộc BC). Trên cạnh AC lấy điểm F sao cho AE=AB, trên tia AB lấy điểm F sao cho AF=AC. Chứng minh rằng:
a) Tam giác BDF= tam giác EDC
b) BF=EC
Cho tam giác ABC có AB = AC. Tia Ax là tia phân giác của góc BAC, tia Ax cắt BC tại H.
Chứng minh rằng:
a.Tam giác AHB = Tam giác AHC
b. AH là đường trung trực của BC
c.Trên tia đối của tia HA lấy điểm D sao cho HD = HA. Chứng minh AB song song CD
Cho tam giác ABC có M và N lần lượt là trung điểm của cạnh AB và AC. Trên tia đối của tia NB lấy điểm D sao cho ND=NB. Trên tia đối của tia MC lấy điểm E sao cho ME=MC. Chứng minh:
a) AD=BC
b) AE song song với BC
cho tam giác ABC có AB = AC. Kẻ tia phân giác AM của góc BAC ( M thuộc BC )a. Chứng minh : Tam giác BAM = tam giác CAM
b. Chứng minh : AM vuông góc BC
c. Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm D sao cho DB = DC. Chứng minh rằng : AD là trung trực BC
Cho tam giác ABC vuông tại A, AB<AC. Kẻ AH vuông tại BC (H thuộc BC). Trên BC lấy điểm I sao cho HI = HB. Trên tia đối của tia HA lấy điểm K sao cho HK = HA:
a) Chứng minh tam giác ABH = tam giác KIH
b) Chứng minh AB song song với KI
c) Vẽ IE vuông góc AC (E thuộc AC). Chứng minh K,I,E thẳng hàng
d) Trên tia đối của tia IA lấy điểm D sao cho ID = IA. Chứng minh góc IKD = góc IDK
Cho tam giác ABC có (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh rằng AC song song với BD.
b) Trên nửa mặt phẳng bờ AD không chứa điểm Bvẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH=BC. Chứng minh rằng ba điểm H, C và D thẳng hàng.
Cho tam giác ABC vuông tại A ( AB<AC) tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Vẽ AH vuông góc với BC tại H. Chứng minh rằng:
a) tam giác ABD= tam giác EBD và AD=ED
b) AH song song với BE
Cho tam giác ABC cân tại A, có AH là tia phân giác của BAC ( H thuộc BC) ,vẽ HE vuông góc với AB ( E thuộc AB) ,vẽ HI vuông góc với AC ( I thuộc AC) .Trên tia đối của tia EH lấy điểm N sao cho EN = EH a) chứng minh tam giác AHE= tam giác AHI vad AN =AH b) trên tia đối của tia IH lấy điểm M sao cho IM =IH ,chứng minh AH vuông góc với MN c) gọi p là giao điểm của AE và MN, vẽ DK vuông góc với AN (K thuộc AN) chứng minh IM lớn hơn HK