Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)
AI GIẢI GIÚP BÀI NÀY VS Ạ
cho tam giác ABC gọi I là điểm trên cạnh BC sao chỗ 2CI=3BI. gọi J là điểm trên BC kéo dài sao cho 5JB=2JC
a/ tinh vt AJ, vt AI theo vt AB va vt AC
b/ gọi G là trọng tâm tam giác ABC tinhvt AG theo vt AI và vt AG
Cho △ABC có trọng tâm G và 2 điểm M, N sao cho: AB = 3AM; CD = 2CN
a) Chứng minh: 3 điểm M, N, G thẳng hàng
b) Biểu diễn \(\overrightarrow{AC}\) qua 2 vecto \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\)
c) Gọi k là giao điểm của AC và GN. Tính tỉ số \(\dfrac{KA}{KB}\)
Cho tam giác ABC có trọng tâm G, trung tuyến AM . Gọi I là điểm trên cạnh BC sao
cho CI IB
Cho tam giác ABC có điểm M là trung điểm của BC. Lấy điểm I sao cho IM =2AI Điểm K thuộc cạnh AC sao cho B.I. K thẳng hàng. Khi đó n KA =m CK .tính S = 2023 - m + n
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
Cho tam giác ABC. M, D lần lượt là trung điểm AB, BC. N trên cạnh AC sao cho CN = 2NA. Lấy K là trung điểm của MN. Phân tích vecto KD theo 2 vecto AB và AC.
cho tam giác ABC gọi M trên cạnh BC sao cho BM =2/3 BC . Phân tích véc tơ AM theo AB AC
cho tam giác ABC có trọng tâm G và 2 điểm M,N sao cho : vecto 3MA+ 4MB = 0 và veco NB-3NC=0 . Chứng minh 3 điểm M, N , G thẳng hàng
Mọi người giúp mình làm với cảm ơn nhìu ạ