a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{7}=\dfrac{c}{1}=\dfrac{a+b+c}{2+7+1}=\dfrac{180}{10}=18\)
=>a=36; b=126; c=18
b: góc A+góc C=180-75=105 độ
=>góc A=3/5*105=63 độ
góc C=105-63=42 độ
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{7}=\dfrac{c}{1}=\dfrac{a+b+c}{2+7+1}=\dfrac{180}{10}=18\)
=>a=36; b=126; c=18
b: góc A+góc C=180-75=105 độ
=>góc A=3/5*105=63 độ
góc C=105-63=42 độ
Cho tam giác ABC có số đo của các góc (tính theo độ) là số nguyên và \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\). Tính GTLN của \(\widehat{A}\)
Cho tam giác ABC có \(\widehat{B}-\widehat{C}=20^0\). Tia phân giác của góc A cắt BC ở D.
Tính số đo các góc \(\widehat{ADC},\widehat{ADB}\) ?
Tam giác ABC có \(\widehat{A}=75^0\). Tính \(\widehat{B}\) và \(\widehat{C}\), biết :
a) \(\widehat{B}=2\widehat{C}\)
b) \(\widehat{B}-\widehat{C}=25^0\)
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Tính \(\widehat{BIC}\) biết rằng :
a) \(\widehat{B}=80^0,\widehat{C}=40^0\)
b) \(\widehat{A}=80^0\)
c*) \(\widehat{A}=m^0\)
Cho tam giác ABC có \(\widehat{B}=80^0,\widehat{C}=30^0\). Tia phân giác của góc A cắt BC ở D. Tính \(\widehat{ADC},\widehat{ADB}\) ?
Cho tam giác ABC, góc B > góc C. Đường thẳng chứa tia phân giác góc ngoài tại đỉnh A cắt đường thẳng BC tại N. Tia phân giác trong của góc A cắt BC tại M. Chứng minh \(\widehat{ANC}=\dfrac{\widehat{AMC}-\widehat{AMB}}2\).
Cho tam giác ABC có \(\widehat{A}=60^0;\widehat{C}=50^0\). Tia phân giác của góc B cắt AC ở D
Tính \(\widehat{ADB},\widehat{CDB}\) ?
Cho tam giác ABC có \(\widehat{A}=100^0;\widehat{B}-\widehat{C}=20^0\).
Tính \(\widehat{B}\) và \(\widehat{C}\) ?
Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC
a. CMR: \(2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}\)
b. CMR: \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c. CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
Cho tam giác ABC có \(\widehat{B}=70^0,\widehat{C}=30^0\). Tia phân giác của góc A cắt BC tại D. Kẻ AH vuông góc với BC (\(H\in BC\))
a) Tính \(\widehat{BAC}\) ?
b) Tính \(\widehat{ADH}\) ?
c) Tính \(\widehat{HAD}\) ?