Câu III ( 3 điểm). Cho tam giác ABC nhọn nội tiếp đường tròn (O). Tiếp tuyến qua B,C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E,F
1) Chứng minh rằng hai tam giác OEF và ABC đồng dạng
2) Gọi J là tâm đường tròn ngoại tiếp tam giác OEF. Chứng minh rằng: OJ//BC
3) Gọi K là trực tâm tam giác OEF. CMR: AT chia đôi đoạn thẳng OK
cho tứ giác ABCD nội tiếp đường tròn O, hai đường chéo AC và BD cắt nhau tại I. Vẽ đường tròn ngoại tiếp tam giác ABI. Tiếp tuyến của đường tròn này tại I cắt AC và AD lần lượt tại M và N. Chứng minh rằng:
a) MN//Cd
b) ABNM nội tiếp
Cho tam giác ABC cân tại A. Đường thẳng xy song song với BC cắt AB tại E và cắt AC tại F. Chứng minh tứ giác EFCB nội tiếp
Cho tam giác MNP cân tại M có cậnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn ( O;R). Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP và tia MN tại E và D.
a) Chứng minh: NE2 = EP.EM
b) Chứng minh tứ giác DEPN kà tứ giác nội tiếp.
c) Qua P kẻ đường thẳng vuông góc với MN cắt đường tròn (O) tại K
( K không trùng với P). Chứng minh rằng: MN2 + NK2 = 4R2.
Cho tam giác ABC nội tiếp đường tròn tâm O vẽ Ax là tiếp tuyến đường tròn O đường thẳng song song với Ax cắt các cạch AB,AC lần lượt D,E . chứng minh BDCE nội tiếp ?
Cho tam giác ABC có 3 góc nhọn(AB<AC) nội tiếp đường tròn (O;R).Vẽ đường kính AD,tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E.Vẽ OH vuông góc với BC (H \(\in\) BC)
a)Chứng minh tứ giác OHDE nội tiếp
b)Chứng minh:\(ED^2=EC.EB\)
c)Từ C vẽ đường thẳng song song với EO cắt AD tại I.CHứng minh HI song song với AB
d)Qua D vẽ đường thẳng song song với EO cắt AB và AC lần lượt tại M và N.Chứng minh DM=DN
Tam giác ABC nội tiếp trong (O). Đường thẳng xy là tiếp tuyến với đường tròn tại A của (O). Đường thẳng song song với BC cắt cạnh AB tại D và cạnh AC tại E.Chứng minh BCED nội tiếp.
Bài 20. Từ điểm A ở ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC với (O), (với B và C là các tiếp điểm).
a)Chứng minh tứ giác OBAC nội tiếp
b)Chứng minh OA vuông góc BC tại H
c)Trên BH lấy điểm D, kẻ đường thẳng vuông góc với OD tại D cắt các tiếp tuyến AB và AC tại E và F. Chứng minh DE = DF
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất