Cho tam giác ABC nhọn (AB<AC) hai đường cao BE và CF cắt nhau tại H.Vẽ đường thẳng vuông góc với AB tại B, vẽ đường thẳng vuông góc với AC tại C , hai đường thẳng này cắt nhau tại D
a) C/m : AH vuông góc với BC và tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC. C/m : 3 điểm H, M, D thẳng hành và tam giác EMF cân
c) Gọi K là điểm đối xứng của H qua BC .C/m BD=CK
d) Dường thẳng vuông góc tại M cắt AD tại L. C/m AH = 2ML
Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh: \(\dfrac{DK}{DC}=\dfrac{1}{3}\)
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC
Cho tam giác ABC vuông tại A AB = 15 cm AC = 20 cm .Vẽ tia Ax song song với BC và tia By vuông góc với BC tại B tia Ax cắt BC tại D
a chứng minh tam giác ABC đồng dạng với tam giác DAB
b tính BC, DA,DA
C,AB cắt AC tại I. tính diện tích tam giác BIC
(Làm hộ mk ý b nha)
Cho tam giác ABC nhọn, AB>AC có các đường cao AD, BE, CF cắt nhau tại H. Gọi P, Q lần lượt là hình chiếu vuông góc của E và F trên BC. ĐƯờng thẳng qua H vuông góc với AD cắt EP và FQ lần lượt tại M và N.
a) Chứng minh: Tam giác EMH đồng dạng với tam giác CPE.
b) HM.QF=HN.EP
Cho tam giác ABC. Vẽ ra phía ngoài tam giác các hình vuông ABDE, ACFG và
hình bình hành AGKE. Chứng minh rằng:
a) AK = BC.
b) AK vuông góc BC.
c) Các đường thẳng AK, BF, CD đồng quy.
(Các bạn chỉ cần làm ý c và d cho mk thôi!)
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Qua B vẽ đường thẳng vuông góc với AB, qua C vẽ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D
a) CM: tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC, O là trung điểm AD. CM: M là trung điểm của HD và AH=2OM
c) Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình chữ nhật
d) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm H, G, O thẳng hàng
cho hình chữ ngật ABCD có AB=3cm, BC=3cm
a) Tính BD
b) Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. Chứng minh: tam giác BCD đồng dạng tam giác CFB. Tính CF
c) Gọi O là giao điểm của AC và BD. Nối EO cắt CF tại I và cắt BC tại K. Chứng minh: I là trung điểm của CF
d) chứng minh: D,K, F thẳng hàng