Xét tứ giác BCDE có
\(\widehat{BDC}=\widehat{BEC}=90^0\)
hay BCDE là tứ giác nội tiếp
Xét tứ giác BCDE có
\(\widehat{BDC}=\widehat{BEC}=90^0\)
hay BCDE là tứ giác nội tiếp
Cho tam giác nhọn ABC nội tiếp trong đường tròn (O) Các đường cao BD; CE ( D thuộc AC; E thuộc AB) của tam giác kéo dài cắt đường tròn (O) tại các điểm M và N ( M khác B ; N khác C).
1) Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn.
2) Chứng minh MN song song với DE.
3) Khi đường tròn (O) và dây BC cố định điểm A di động trên cung lớn BC sao cho tam giác ABC nhọn. Chứng minh: bán kính của đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí điểm A để diện tích tam giá ADE đạt giá trị lớn nhất
8/117
cho tam giác nhọn ABC nội tiếp đường tròn O . gọi H là giao điểm của 2 đường cao BD và CE
A/ chứng minh tứ giác BCDE nội tiếp và xác định tâm I của đường tròn này
B/ vẽ đường kính AK của đường tròn O . chứng minh tứ giác BHCK là hình bình hành rồi suy ra 3 điểm H,I,K thẳng hàng
C/ giả sử BC = 3/4 AK . tính tổng AB.CK+AC.BK
thankkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Cho tam giác ABC nhọn, AB < AC nội tiếp đường tròn (O). Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của DE và CB.
a) CMR: Tứ giác BCDE nội tiếp
b) C/m : KB.KC = KE.KD
c) Gọi M là trung điểm của BC, AK cắt đường tròn (O) tại điểm thứ 2 là N. C/m : 3 điểm M, H, N thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Các đường cao BD,CE cắt nhau tại H. DE cắt BC tại F. Gọi K là giao điểm của AF với (O),N là giao điểm của KH a) Chứng minh tứ giá BEDC nội tiếp. Xác định tâm M của đường tròn ngoại tiếp tứ giác BEDC b ) Chứng minh góc FKE= góc FDA c ) Chứng minh AN là đường kính của đường tròn tâm O từ đó suy ra FH vuông góc với AM
Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H. Gọi F và K lần lượt là giao điểm của AH với BC, DE
a) Chứng minh: Tứ giác ADHE nội tiếp đường tròn và xác định tâm I của đường tròn.
b) Chứng minh: DB là phân giác của góc EDF và \(\dfrac{KH}{HF}=\dfrac{DK}{DF}\)
c) Đường thẳng CE cắt đường tròn tại điểm thứ hai N, NF cắt đường tròn tại điểm thứ hai P, gọi Q là trung điểm của DF. Chứng minh A, P, Q thẳng hàng
cho tam giác abc nhọn ( AB< AC ) nội tiếp đường tròn (O) có đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh tứ giác ADHE nội tiếp và AD.AB=AE.AC
b) Gọi K là giao điển của DE và BC. Chứng minh tứ giác BCDE nội tiếp và KH bình =KB.KC c) Đường thẳng KA cắt (O) tại F. Gọi I là tâm đường tròn ngoại tiếp tứ giác BCDE. Chứng minh F, H, I thẳng hàng.
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E,BD và CE cắt nhau tại H.
a) Chứng minh: AEHD nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác AEHD
b) Chứng minh: IE là tiếp tuyến của đường tròn (O)
c) Vẽ đường lính EF của đường tròn (I),OF cắt đường tròn (I) tại M ,OI cắt ED tại K.Chứng minh: Tứ giác MKIF nội tiếp.
cho tam giác nhọn ABC đường tròn tâm o đường kính BC cắt AB,AC lần lượt tại D,E . hai đường thẳng BD và CE cắt nhau tại H . a,Chứng minh ADHE là tứ giác nội tiếp đường tròn
b,Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tam giacs ADH
c,Cho góc BAC = 60 độ . chứng minh Sabc = Sade