cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E là điểm đối xứng với B qua H. Đường tròn đường kính EC cắt AC ở K. C/m: HK là tiếp tuyến của đường tròn
Cho tam giác ABC, đường cao BE, CF cắt nhau tại H. M là trung điểm của AH. Chứng minh rằng ME, MF là tiếp tuyến của đường tròn đường kính BC.
Cho tam giác ABC nhọn , dựng đường tròn tâm O đường kính BC , đường tròn (O) cắt các cạnh AB , AC lần lượt tại M và N , BN cắt CM tại H . Chứng minh AH vuông góc với BC
Cho đường tròn nội tiếp tam giác ABC (O) tiếp xúc với AB, AC, BC lần lượt tại D,E,F. Qua E kẻ đường thẳng d//AB cắt CD tại P, cắt FD tại Q. CMR: EP=PQ
Cho đường tròn nội tiếp tam giác ABC (O) tiếp xúc với AB, AC, BC lần lượt tại D,E,F. Qua E kẻ đường thẳng d//AB cắt CD tại P, cắt FD tại Q. CMR: EP=PQ
Cho tam giác abc có (Ib), (Ic) là các đường tròn bàng tiếp góc B, C. (Ib), (Ic) tiếp xúc với BC lần lượt tại E, F. Chứng minh BF = CE
Cho tam giác ABC cân tại A, đường cao AH và BK cắt nhau tại I. Chứng minh HK là tiếp tuyến của đường tròn đường kính AI.
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB . Chứng minh rằng :
a) CE = CF
b) AC là tia phân giác của góc BAE
c) \(CH^2=AE.BF\)
Cho đường tròn(O;R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, đường thẳng này cắt tiếp tuyến tại B của đường tròn tròn ở AChứng minh rằng:1. IB=IC2. AC là tiếp tuyến của đường tròn(O)3. Biết OB =10cm, BC=16cm. Tính OA