Cho tam giác ABC vuông tại A . Đường cao AH.Gọi D là điểm đối xứng của H qua AB, E là điểm đối xứng của H qua AC a) Tìm số điểm chung của đường thẳng BD, của đường thẳng CE với đường tròn tâm A, bán kính AH. b) Chứng minh các điểm D,A,E thẳng hàng c) Xác định vị trú tương đối của đường thẳng DE với đường tròn đường kính BC
Cho nửa đường tròn (O;\(\dfrac{AB}{2}\)), Ax là tiếp tuyến của nữa đường tròn (Ax và nữa đường tròn cùng phía với AB). C là 1 điểm thuộc nữa đường tròn H là hình chiếu của C trên AB. Đường thẳng qua O và vuông góc với AC cắt Ax tại M. Gọi I là giao điểm của MB và CH. C/m: CI=IH
cho tam giác abc có ab=3cm, ac=4cm, bc=5cm. kẻ ah vuông góc với bc( h thuộc bc). a/ tam giác abc là tam giác gì? vì sao. b/ tính ah, góc b và c. c/ vẽ đường tròn( b, bh) và đường tròn ( c, ch). từ điểm a lần lượt vẽ tiếp tuyến am và an của đường tròn( b) và (c). tính góc mhn
Cho tam giác ABC, đường cao BE, CF cắt nhau tại H. M là trung điểm của AH. Chứng minh rằng ME, MF là tiếp tuyến của đường tròn đường kính BC.
Cho \(\Delta ABC\perp A\); AB = 8; AC = 15. Vẽ đường cao AH gọi D là điểm đối xứng của B qua H. Vẽ đường tròn đường kính CD cắt AC tại E
a. CMR : HE là tiếp tuyến đường tròn
b. Tính HE
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB . Chứng minh rằng :
a) CE = CF
b) AC là tia phân giác của góc BAE
c) \(CH^2=AE.BF\)
Cho tam giác ABC nhọn , dựng đường tròn tâm O đường kính BC , đường tròn (O) cắt các cạnh AB , AC lần lượt tại M và N , BN cắt CM tại H . Chứng minh AH vuông góc với BC
Cho đường tròn(O;R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, đường thẳng này cắt tiếp tuyến tại B của đường tròn tròn ở AChứng minh rằng:1. IB=IC2. AC là tiếp tuyến của đường tròn(O)3. Biết OB =10cm, BC=16cm. Tính OA
cho tam giác ABC vuông tại B có AC=5cm, góc BAC bằng 60 độ, đường cao BH. Vẽ đường tròn tâm O đường kính BH, đường tròn (O) cắt BA tại M ( M khác B). Tính độ dài AB