Ôn tập: Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Jojoi Emu

Cho tam giác ABC nhọn có 3 góc nhọn , các đường cao AD ; BE ; CF cắt nhau tại H . Chứng minh :

a. AE.AC = AF.AB

b.tam giác AEF đd tam giác ABC ; tam giác DBF đd tam giác DEC

c. tam giác HEF đd tam giác HBC

d.chứng minh:BF.BA+CE.CA=BC^2

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:35

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:36

b)

Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Nguyễn Lê Phước Thịnh
17 tháng 5 2021 lúc 10:41

d) Xét ΔBFC vuông tại F và ΔBDA vuông tại D có 

\(\widehat{FBD}\) chung

Do đó: ΔBFC\(\sim\)ΔBDA(g-g)

Suy ra: \(\dfrac{BF}{BD}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BF\cdot BA=BD\cdot BC\)

Xét ΔBEC vuông tại E và ΔADC vuông tại D có 

\(\widehat{BCE}\) chung

Do đó: ΔBEC\(\sim\)ΔADC(g-g)

Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CE\cdot CA=CB\cdot CD\)

Ta có: \(BF\cdot BA+CE\cdot CA\)

\(=BC\cdot BD+BC\cdot CD\)

\(=BC\left(BD+CD\right)\)

\(=BC\cdot BC=BC^2\)(Đpcm)


Các câu hỏi tương tự
Phan Cả Phát
Xem chi tiết
Anh Duy Vũ
Xem chi tiết
nguyễn linh
Xem chi tiết
Anh Nam
Xem chi tiết
Võ Trịnh Thái Bình
Xem chi tiết
Ngọc Nguyễn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nam Trân
Xem chi tiết
phạm hoàng minh
Xem chi tiết