a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(ĐPCM)
b)
Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(cmt)
nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{FAE}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
d) Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
\(\widehat{FBD}\) chung
Do đó: ΔBFC\(\sim\)ΔBDA(g-g)
Suy ra: \(\dfrac{BF}{BD}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BF\cdot BA=BD\cdot BC\)
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
\(\widehat{BCE}\) chung
Do đó: ΔBEC\(\sim\)ΔADC(g-g)
Suy ra: \(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CE\cdot CA=CB\cdot CD\)
Ta có: \(BF\cdot BA+CE\cdot CA\)
\(=BC\cdot BD+BC\cdot CD\)
\(=BC\left(BD+CD\right)\)
\(=BC\cdot BC=BC^2\)(Đpcm)