Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC. E thuộc AB) 1. CM các tứ giác ADHE và BCDE nội tiếp được trong một đường tròn 2. Tia BD và tia CE lần lượt cắt đường tròn O tại M và N. Cm DE song song MN 3. Kẻ đường kính AK. Cm tứ giác BKCM là hình thang cân
Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. Chứng minh:
Giải giúp mình câu c và d nhé!
a/ tứ giác CEHD nội tiếp . b/Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
c/ tam giác cân EBD cân. d/ DE là tiếp tuyến của đường tròn (O).
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
1) Cho đường tròn tâm O, đường kính AB=2R, C là trung điểm của OA; D là một điểm của đường tròn sao cho BD=R. Đường trung trực của OA cắt AD tại E và BD tại F.
a) Tính các đoạn AE, CE và ED theo R.
b) Chứng minh rằng hai tam giác ADB và FCB đồng dạng. Tính FB và FC theo R.
c) Chứng tỏ rằng: .
cho tam giác đều nội tiếp đường tròn (o;r). đường thẳng vuông góc với ac tại a cắt (o) tại d, cắt tiếp tuyến của đường tròn (o) tại e . gọi m là trung điểm của ce và f của ac và bd .a) chứng minh :am là tiếp tuyến của đường tròn (o) b) tứ giác amcb là hình gì? vì sao? c) chứng minh: bc//ef e) chứng minh: c,d,e,f cùng thuộc một đường tròn f) tính cf,de theo r
: Cho tam giác ABC nhọn nội tiếp đường tròn tâm (O; R), hai đường cao AD, BE của tam giác ABC
cắt nhau tại H.
a) Chứng minh: CH AB.
b) Chứng minh: Bốn điểm A, E, D, B cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
c) Chứng minh: OI2 + DI2 = R2.
Cho tam giác ABC cân tại A có góc A bé hơn 90 độ có các đường cao AD và BE cắt nhau tại H. Gọi O là trung điểm của AB
a,Chứng minh ba điểm A,E,H cùng thuộc một đường tròn và Chứng minh tứ giác ABCD nội tiếp
b, DE là tiếp tuyến của đường tròn tâm O
c, Chứng minh tam giác CDE đồng dạng tam giác CAB
Cho đường tròn tâm O và hai tiếp tuyến AB, AC (B, C thuộc (O)). Cát tuyến AED với (O) (E nằm giữa A và D)
a) chứng minh tứ giác ABOC nội tiếp và OA vuông góc với BC tại H
b) chứng minh AC2 = AD . AE từ đó suy ra tứ giác OHED nội tiếp
cho tam giác đều ABC nội tiếp đường tròn (O;R) đường thẳng vuông góc với AC cắt (O) tại D cắt tiếp tuyến qua C của đường tròn O tại E. Gọi M là trung điểm của CE và F là giao điểm của AC và BD a) CM:AM là tiếp tuyến đường tròn(O) b) tứ giác AMCB là hình gì? Vì sao? c) CM: C,O,D thẳng hàng d) CM: BD//EF e) CM: B,D,C,F thuộc 1 đường tròn