Cho tam giác ABC nhọn, các đường cao BD,CE. Tia phân giác của các góc đó cắt nhau tại O, cắt AC và AB lần lượt ở N và M. Tia BN cắt CE tại K, tia CM cắt BD tại H. CMR:
a) BN\(\perp\)CM
b) Tứ giác MNHK là hình thoi
cho tam giác ABC trên AB lấy điểm D , trên AC lấy điểm E sao cho BD = CE . Gọi M,N,P,Q lần lượt là trung điểm của các cạnh BC, CD, DE, và EB .
a) tứ giác MNPQ là hình gì b) phân giác của góc A cắt BC tại F . chứng minh PM/AF c) Đường thẳng QN cắt AB và AC tại I và K. Tam giác AIK là tam giác gì vì sao1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC
a, Tứ giác BMNC là hình gì ?
b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?
c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .
d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông
2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E
a, Chứng minh tam giác BME cân
b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?
c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng
d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng
Cho tam giác ABC(AB<AC). Hai đường cao BD và CE cắt nhau tại H. So sánh hai góc BAH và CAH
Cho tam giác ABC. Trên cạnh AB lấy điểm D, cạnh AC lấy điểm E sao cho BD = CE. Gọi M, N, P, Q lần lượt là trung điểm của BC, CD, DE, EB.
a) Tứ giác MNPQ là hình gì?
b) Phân giác góc A cắt cạnh BC tại F. Chứng minh rằng PM song song với AF.
c) Đường thẳng QN cắt AB và AC lần lượt ở I và K. Tam giác AIK là tam giác gì?
1) Cho hình bình hành ABCD. Trên AB, BC, CD, DA lấy E, F, G, H sao cho AE=CG, BF=DH.
Chứng minh EFGH là hình bình hành
2) Cho tam giác ABC, góc A=90o. Kẻ AH vuông góc với BC. Gọi D, E là đối xứng của H qua AB, AC
a, Chứng minh D và E đối xứng nhau qua A
b, Chứng minh BDEC là hình thang vuông
c, Chứng minh BD+CE=BC
3) Cho tam giác ABC, lấy D thuộc tia đối của tia BC, E thuộc tia đối của tia CB sao cho DB=BC=CE. Qua D kẻ đường thẳng song song với AB cắt AC tại H.Qua E kẻ đường thẳng song song với AC cắt AB tại K. Chúng cắt nhau tại I
a, Tứ giác BHKC là hình gì? Vì sao?
b, Kéo dài IA, cắt BC tại M. Chứng minh MB=MC
c, Tam giác ABC thỏa mã điều kiện nào để DHKE là hình thang cân
Giúp mình với!!! Nhanh nha!!! Cảm ơn m.n nhiều!!!
Cho tam giác ABC nhọn 3 đường cao AD, BE, CF cắt nhau tại H. Gọi I, K lần lượt là hình chiếu của D trên AB, AC. E, F cắt AD tại O. Chứng minh IK đi qua trung điểm của OD.
Cho hình vuông ABCD. Gọi E, F là trung điểm của AB, BC. DF và CE cắt nhau tại I, BD cắt EF tại G.
a) Chứng minh tam giác GIB cân
b) Trên tia đối của tia CB, lấy H sao cho CH=CB. Chứng minh BD=HI
1, cho ΔABC, trực tâm H. Đường vuông góc với AB tại B và đường vuông góc vói AC tại C cắt nhau bởi . M là trung điểm của BC, đường cao BN
a, BNCD là hình gì
b, Gọi O là trung điểm của AD. C/m OM=1/2 AH
2, cho ΔABC, các đường cao BD,CE cắt nhau tại H. Gọi I là trung điểm của AH, M là trung điểm của BC
a, C/m: lE=lD
b, C/m: D là điểm đối xứng với E qua lM
c, Góc lDM=?