Cho tam giác ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh ΔBFH đồng dạng với ΔCEH và FA.BH=FH.AC
b) Gọi I là trung điểm của BC và K là điểm đối xứng với H qua I. Chứng minh ΔAKC đồng dạng ΔAFH.
c) AK cắt HC tại O. Lấy điểm thuộc đoạn thẳng AC sao cho EF // OM. Chứng minh HM vuông góc với AD.
Câu a có thể không cần nhưng mình xin đáp án câu b, c với ạ.
cho tam giác abc, các đường cao bd, ce cắt nhau tại h. đường vuông góc với ab tại b và đường vuông góc ac tại c cắt nhau ở k. gọi m là trung điểm của bc
a, cm tam giác adb đồng dạng tam giác aec
b, cm he.hc=hd.hb
c, cm h, k, m, thẳng hàng
d, tam giác abc phải có điều kiện gì thì tam giác bhck là hình thoi? hình chữ nhật?
Cho tam giác ABC nhọn, các đường cao BE, CF cắt nhau tại H( E thuộc AC, F thuộc AB). Gọi O là giao điểm 3 đường trung trực của tam giác ABC. Chứng minh rằng khoảng cách từ O đến cạnh BC bằng một nửa độ dài AH
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DAEB ∽ DAFC.
b) Chứng minh tam giác AEF ∽ tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Làm giúp mình câu c,d với!!!
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Bài 1. Cho △ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a. Cm: △AFH ∼ △ ADB
b. Cm: BH . HE = CH . HF
c. Cm: △AEF ~ △ABC
d. Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường AC tại N. Chứng minh: MH = HN.
Bài 2. Cho △ABC (AB<AC) có ba góc nhọn, các đường cao AD, BE,CF cắt nhau tại H.
a. Cm: △CFB ~ △ADB
b. Cm: AF . AB = AH . AD
c. Cm: △BDF ~ △BAC
d. Gọi M là trung điểm của BC. Chứng minh: Góc EDF = góc EMF.
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác AEB ∽ tam giác AFC.
b) Chứng minh tam giác AEF ∽tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.