vì EF//DC(gt)
=> \(\dfrac{AD}{AF}=\dfrac{DC}{FE}=\dfrac{AC}{AE}\) (1)
vì DE//BC(gt)
=>\(\dfrac{AB}{AD}=\dfrac{BC}{DE}=\dfrac{AC}{AE}\) (2)
Từ 1 và 2=>\(\dfrac{AD}{AF}=\dfrac{AB}{AD}=>AD^2=AB.AF\)
(hình tớ vẽ k đc chính xác cho lắm,thông cảm nha)
vì EF//DC(gt)
=> \(\dfrac{AD}{AF}=\dfrac{DC}{FE}=\dfrac{AC}{AE}\) (1)
vì DE//BC(gt)
=>\(\dfrac{AB}{AD}=\dfrac{BC}{DE}=\dfrac{AC}{AE}\) (2)
Từ 1 và 2=>\(\dfrac{AD}{AF}=\dfrac{AB}{AD}=>AD^2=AB.AF\)
(hình tớ vẽ k đc chính xác cho lắm,thông cảm nha)
6*. Cho tam giác ABC có AM là trung tuyến và điểm E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với
AC, cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB, cắt AC ở F. Chứng minh CF=DK.
7*. Cho tam giác ABC nhọn, M là trung điểm của BC và H là trực tâm. Đường thẳng qua H và vuông góc với MH cắt
AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự ở N và D. Chứng
minh:
a) NC=ND . b) HI=HK
8*. Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt
BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ qua F song song với BD cắt CD ở G. Chứng
minh AH.CD=AD.CG.
1. Cho tứ giác ABCD. E ∈ AB. Kẻ qua E đường thẳng song song AC cắt BC ở F. Qua F vẽ đường thẳng song song BD cắt CD ở G. Qua G vẽ đường thẳng song song vs AC cắt AD ở H. CM: EFGH là hình bình hành.
2. Cho ΔABC có AB=4cm, BC=8cm, AC=6cm. Các p/g trong và ngoài tại A cắt BC ở D, E. Tính BD, DC, BE.
3. Cho hthang ABCD( AB//CD). AB=10cm, CD=30cm, E ∈ AD sao cho AE=3ED. Qua E kẻ đường thẳng song song với CD cắt BC ở F. Tính EF.
Cho góc xAy<90•. Trên tia Ax lấy theo thứ tự hai điểm A,B. Từ B và C kẻ hai đường thẳng song song với nhau và cắt Ay ở D và E. Từ E vẽ đường thẳng song song với CD cắt Ax ở F.
a) so sánh AB/AC và NB/BC
b) chứng minh AC^2=AB.AF
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. Gọi tia AB và tia CD cắt nhau tại E. BE DE a ) Chứng minh : BA DC b ) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thăng AD , BC tại I , K. Chứng minh : El = EK ; c ) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD ; d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh PT LAD
Cho tam giác ABC, trung tuyến AM, E thuộc MC. Qua E kẻ đường thẳng song song vs AC, cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song vs AB cắt AC ở F. CM : CF = DK.
Qua một điểm O tùy ý ở trong tam giác ABC kẻ đường thẳng song song với AB, cắt AC và BC tại D và E , đường thẳng song song với AC cắt AB và BC tại F và K , đường thẳng song song với BC cắt AB và AC tại M và N . CM:
AF: AB + BE: BC+CN:CA= 1
Cho tam giác ABC có AB=14cm, AC=10cm, CB=12cm. Đường phân giác của góc BAC cắt cạnh BC ở D.
a, tính độ dài các đoạn thẳng BD,DC
b, tính tỉ số diện tích của tam giác ABD và tam giác ACD
c, Qua D kẻ đường thẳng song song với AB cắt cạnh ÁC ở E. Tính DE, AE, EC
Giúp mình với mấy bạn ơiiiiiiii<3
Bài 2: Cho tam giác ABC. Từ điểm D trên cạnh BC, kẻ các đường thẳng song song với các cạnh AB và AC, chúng cắt các cạnh AC và AB theo thứ tự tại F và E. Chứng minh rằng: AE trên AB+À trên AC =1
giúp mik với mik cần gấp thanks nhiều![]()
Cho ∆ABC, trung tuyến AM, E thuộc đoạn thẳng MC. Qua E kẻ dường thẳng song song với AC, cắt AB ở D và cắt AM ở K. Qua E kẻ đường thẳng song song với AB, cắt AC ở F. Chứng minh rằng: CF=DK.