Cho \(\Delta\)ABC vuông tại A,Ah là đường cao,Bh=4cm,Ch=9cm.Gọi D,E lần lượt là hình chiếu của H trên Ab,Ac
1) Tính dộ dài DE
2)gọi I là tđ của BC,CM:AI vuông góc với DE
3) CM: góc ADE = góc ACB và góc AED= góc ABC
4) CM: \(AC^2\)=CH.CB
5) CM: AC.BD+AB.CE=AH.BC
[ giúp mình nha ]
Cho tam giác ABC vuông tại A , AH là đường cao . D,E là hình chiếu vuông góc của H trên AB , AC .
a, Chứng mình : Tam giác ABH đồng dạng CAH
b, Chứng minh : AD.AB=AE.AC-AH
c, Chứng minh : Đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE
cho tam giá ABC vuông A đường cao AH. D,E lần lượt là hình chiếu của H trên AB và AC Bạn đã gửi a) cm tam giác HAC ĐỒNG GIẠNG tam giác ACB.
b cho AB=3cm; AC=4cm, tính BC,AH,BH.
c) chứng minh AD.AB=AF.AC.
d) AH^4=BD.BA.CE.CA
help vẽ hình nữa nha
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh rằng: Δ AEF Δ ABC. b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF? c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
giúp mình câu c với ạ
Cho tam giác ABC vuông tại A (AB>AC), M là trung điểm BC. Gọi H là hình chiếu của M trên AC
a) Chứng minh H là trung điểm AC.
b) Từ M kẻ đường thẳng vuông góc với BC cắt AC kéo dài tại F. Chứng minh BC.HM=EM.AC
c) Gọi N là trung điểm MH. Chứng minh góc NEM = góc HBC.
d) Chứng minh BH vuông góc với EN.
P/s. Làm ơn giải chi tiết và vẽ hình giúp ạ. Mai em phải nộp rồi. :((
Cho tam giác ABC vuông tại A có AB = 20cm, AC = 21cm, đường phân giác của góc A cắt BC tại điểm D.
Tính BC, DB, DC (làm tròn đến phần trăm)
Gọi E, F lần lượt là hình chiếu của D lên AB, AC. Chứng minh ∆BED đồng dạng ∆BAC và tính tỉ số đồng dạng của chúng.
Tính diện tích tứ giác AEDF.
cho tam giác abc vuông tại A.
phân giác góc ABC cắt AC tại E.
Vẽ đường cao AH cắt BE tại I, AB=24cm, BC=30cm.
a) tính ea và ec ( mình làm được rồi
b) chứng minh ah mũ 2= bh.ch ( mình làm đc rồi
c) gọi K là hình chiếu của C lên BE
chứng minh tam giác AEK đồng dạng vs tam giác BEC ( Giup minh voi)
cho tam giác MNB vuông tại M, dường cao MH biết MN=6, MB=8 a) C/m: tam giác NMH đồng dạng tam giác NBM b) Tính NB, NH, BH, MH c) A là hình chiếu của H trên MB C/m: HA2= MA.BA
Hướng dẫn giúp em/mình bài thi HSG toán 8 này với ạ.
Cho tam giác ABC có 3 góc đều nhọn. Các đường cao BP, CQ của tam giác ABC cắt nhau tại H. Gọi M là điểm nằm trong tam giác ABC sao cho góc MBA = góc MCA. Gọi E, F lần lượt là hình chiếu của M lên các cạnh AB, AC. Chứng minh rằng đường thẳng HM đi qua trung điểm của EF.