Cho tam giác ABC có H là trực tâm, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại E và F, trên tia đối của tia HC lấy HD = HC. Chứng minh rằng:
1) HM // BD 2) E là trực tâm của tam giác HBD
3) DE // AC 4) EH = HF
cho tam giác ABC có AB=12cm, AC=18cm. Goị H là chân đường vuông góc kẻ từ B đến tia phana giác của góc A.Gọi M là trung điểm của BC. Tính độ dài của HM
Bài 4:Cho hình thang ABCD có góc A= góc D= 90 độ, AB= AD= 2cm; DC= 4cm và BH vuông góc CD tại H
a)Chứng minh rằng: tam giác ABD= tam giác HDB
b)Chứng minh rằng: tam giác BHC vuông cân tại H
Tam giác ABC : AB = 12cm; AC = 18cm. Gọi H là chân đường vuông góc kẻ từ B đến tia phân giác Å. Gọi M là trung điểm của BC. K là giao điểm của BH và AC. Tính HM ?
Cho tam giác ABC có góc Â>90°. Bên ngoài tam giác ABC vẽ tam giác ABD, ACE vuông cân tại A a) Gọi M,N,k lần lượt là trung điểm BD, CE, BC. Chứng minh tam giác MNK là tam giác vuông cân
Gấp ạ!
Cho tam giác ABC vuông tại A có AB = 12cm, BC = 13cm. Gọi M, N là trung điểm của AB, BC.
a) Chứng minh: MN vuông góc với AB;
b) Tính độ dài MN.
c) Gọi P là trung điểm của AC. Tính độ dài cạnh MP, NP.
Cho tam giác ABC có G là trọng tâm. Qua G kẻ đường thẳng d sao cho d cắt cả hai cạnh AB, AC. Gọi H, K, L lần lượt là chân đường vuông góc kẻ từ các điểm A, B, C đến đường thẳng d. Chứng minh AH = BK + CL
Cho tam giác ABC ( AB< AC). Trên AB lấy M, AC lấy N sao cho BM=CN. Gọi E là trung điểm của MN, F là trung điểm của BC, I là trung điểm BN.
a) CM tam giác IEF cân
b) Đường thẳng EF cắt AB, AC tại G và H. CM AG=AH
cho tam giác đều abc , độ dài các cạnh là a . gọi o là điểm bất kỳ trong tam giác. Trên cạnh ab , bc , ac lần lượt lấy các điểm m , n , p sao cho om//bc , on//ca và op//ab . Xác định vị trí điểm o để tam giác mnp là tam giác đều. Tính chu vi tam giác đều đó.
mình cần gấp