Bài 6: Tính chất hai tiếp tuyến cắt nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC, đường tròn (K) bàng tiếp trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC  = a, AC = b, AB = c. Chứng minh rằng :

a) \(AE=AF=\dfrac{a+b+c}{2}\)

b) \(BE=\dfrac{a+b-c}{2}\)

c) \(CF=\dfrac{a+c-b}{2}\)

Nguyen Thuy Hoa
24 tháng 6 2017 lúc 13:56

Tính chất hai tiếp tuyến cắt nhau

Mysterious Person
24 tháng 6 2017 lúc 14:01

gọi D là tiếp điểm của đường tròn (K) trên BC . ta có DB = BE ; CD = CF (tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\) AE = AB + BE = c + BD

AF = AC + CF = b + CD

\(\Rightarrow\) AE + AF = b + c + (BD + CD)

= a + b + c

ta lại có AE = AF (tính chất 2 tiếp tuyến cắt nhau)

\(\Rightarrow\) AE = AF = \(\dfrac{a+b+c}{2}\) (đpcm)

b) BE = AE - AB = \(\dfrac{a+b+c}{2}\) - c = \(\dfrac{a+b-c}{2}\) (đpcm)

c) CF = AF - AC = \(\dfrac{a+b+c}{2}\) -b = \(\dfrac{a+c-b}{2}\) (đpcm)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hà mỹ trang
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Mạnh Hùng Lê
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết