Cho tam giác ABC, đường tròn có đường kính BC cắt AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H.
a) Chứng minh AH vuông góc với BC tại F (F thuộc BC).
b) Chứng minh FA.FH = FB.FC.
c) Chứng minh IE là tiếp tuyến của đường tròn đường kính BC
cho tam giác abc có 3 góc nhọn, vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. BE và CD cắt nhau tại H
a)Chứng minh IO vuông góc DE
b)AH kéo dài cắt BC ở F. CMR: H là tâm đường tròn nội tiếp ΔDFE
Cho tam giác ABC vuông tại A có AB=a, BC=2a. Các đường tròn đường kính AB, AC cắt nhau tại điểm thứ hai là D.
a) Chứng minh B, C, D thẳng hàng.
b) Gọi E, F lần lượt là điểm đối xứng của D qua AB, AC. Chứng minh A, E, F thẳng hàng.
c) Tính theo a khoảng cách từ trung điểm của AC tới EF
d) Tính theo a diện tích của tứ giác BCEF
Cho tam giác ABC vuông tại A( AB < AC) nội tiếp đường tròn (O) có đường kính BC. Kẻ dây AD vuông góc với BC. Gọi E là giao điểm của DB và CA. Qua E kẻ đường thẳng vuông góc với BC, cắt BC ở H, cắt AB ở F. Chứng minh rằng :
a) Tam giác EBF là tam giác cân
b) Tam giác HAF là tam giác cân
c) HA là tiếp tuyến của đường tròn (O)
Cho tam giác ABC vuông A (AB<AC), M là trung điểm của AC. Đường tròn đường kính MC cắt BC tại N. Kéo dài BM cắt đường tròn tại D.
a) Chứng minh A, B, C, D cùng thuộc một đường tròn.
b) O là trung điểm BC. Chứng minh OM là tiếp tuyến của đường tròn đường kính MC
Gấp lắm ạ!!!
Cho đường tròn(O;R) dây AB=r√3 qua O kẻ đường vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) tại điểm M a/Chứng minh tam giác OMB là tam giác vuông và từ đó suy ra MB là tiếp tuyến b/Vẽ đường kính BC của đường tròn(O).chứng minh AC vuông góc AB c/Tính diện tích tứ giác MAOB theo R
Cho tam giác ABC vuông tại A ( AB <AC) vẽ đường tròn (O) đường kính AC , đường tròn (O) cắt BC tại D .Vẽ tiếp tuyến BE của (o) ( E là tiếp điểm) .BO cắt AE tại H
a) Chứng Minh : Tứ giác OB vuông AE và BH.BO=BD.BC
Chứng minh DHOC là tứ giác nội tiếp và BHD=OHC
Giup mk ạ =((((
Câu 4: Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH.
1. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH.
2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (C).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2 PE.QF = EF
Cho tam giác ABC vuông tại A, AB=18cm, BC=30cm. Kẻ đường cao AH, vẽ đường tròn tâm A bán kính AH. Từ B và C vẽ các tiếp tuyến BE và CF với đường tròn tâm A ( E, F là các tiếp điểm).
a) Chứng minh ba điểm E, A ,F thẳng hàng
b) Chứng minh EF là tiếp tuyến của đường tròn đường kính BC