a, Xét 2 △ACE và △ABF
\(A_1\)=\(A_2\)( AD là đường phân giác của góc A)
\(\widehat{AFB}\)=\(\widehat{AEC}\)(=90*)
=> △ ACE đồng dạng vs △ ABF(g.g)
a, Xét 2 △ACE và △ABF
\(A_1\)=\(A_2\)( AD là đường phân giác của góc A)
\(\widehat{AFB}\)=\(\widehat{AEC}\)(=90*)
=> △ ACE đồng dạng vs △ ABF(g.g)
Cho tam giác ABC vuông tại A có đường cao AH
a) CM tam gíac ABH đồng dạng vs tam giác ABC
b)Từ B kẻ đường thẳng song song vs AH và cắt AC tại I. CM tam giác ABI đồng dạng vs tam giác ABH
c) Kẻ AK vuông góc vs BI. CM tam giác AKB đồng dạng vs tam giác ABI
d) CM tam giác BKH đồng dạng vs tam giác BCI
cho tam giác abc vuông tại a ab bé hơn ac phân giác ad.qua D kẻ đường thẳng vuông góc với bc cắt cạnh ab và ac lần lượt f và e
chứng minh
a)bc.ac=ab.cd
b)tam giác cbf đồng dạng tam giác dab
c)tam giác cdf vuông cân
d)cm FC^2=ce.ca+fe.fd
Cho tam giác ABC có đường cao BD và CE cắt nhau tại H
a) CM tam giác EHB đồng dạng vs tam giác DHC và HE.HC=HD.HB
b) CM tam giác ABD đồng dang vs tam giác ACE và AE.AB=AD.AC
c) CM tam giác AED đồng dạng vs tam giác ABC
d) ED cắt BC tại I. CM IE.ID=IB.IC
Cho tam giác ABC vuông tại A có AB = 6cm ; AC= 8cm . Đường cao AH và phân giác BD cắt nhau tại I ( H trên BC và D trên AC ) .
a) Tính độ dài AD , DC
b) Cm : tam giác ABC đồng dạng với tam giác HBA và AB^2 = BH.BC
c) Cm : tam giác ABI đồng dạng với tam giác CBD
d) Cm : \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
( Giải giúp mình câu c với d ạ cảm ơn ^^ )
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB
Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB
cho tam giác abc vó 3 góc nhọn. Gọi D,E,F là chân đường hạ từ A,B,C của tam giác. Ba đường cao này cắt nhau tại H.
a) CM: tam giác AHE đồng dạng vs tam giác BHD
b) CM: AE.AC=AF.AB
c) Cho AE=3cm; AB=5cm.Tính tỉ số SAEF/SABC
cho tam giác ABC,từ B kẻ tia Bx cắt AC tại M. sao cho góc ABM = góc ACB. chứng minh a) tam giác ABM đồng dạng với tam giác ACB. b)tính AB biết AM=2 cm,CM=2,5 cm
Cho tam giác ABC nhọn, đường cao AH và BK cắt nau tại I. a) CM: tam giac AKB đồng dạng với tam giác BHA. b) tam giác BKC đồng dạng với tam giác AHC. c) CM: BI . IK = AI . IH. d) CM: ABI đồng dạng HKI. e) tam giác ABC đồng dạng tam giác HKC