Cho tam giác ABC vuông tại B, có góc ACB khác 30 độ. Gọi E, F theo thứ tự là trung điểm của BC, AC. Đường phân giác góc BAC cắt EF tại I và cắt BC tại K.
a) CM: tam giác ADH đồng dạng với tam giác BDA
b) CM: KC/KE=AC/IE
c) Qua K kẻ KH vuông góc với AC tại H. CM: tam giác BKH đồng dạng với tam giác AFI
Mn giúp em zứi em đang cần nộp gấp ạ![]()
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D và E thứ tự là hình chiếu của H trên AB, AC.
a) Chứng minh rằng tam giác ABC đồng dạng tam giác HBA.
b) Cho HB = 4cm, HC = 9cm. Tính AB, DE.
c) Chứng minh AD.AB = AE.AC và AM vuông góc DE.
d) Tam giác ABC phải có điều kiện gì để diện tích tam giác ADE bằng 1/3 diện tích tứ giác BDEC.
Cho tam giác ABC có AB=3 cm ; AC= 4,5 cm. Lấy điểm M trên cạnh AB sao cho AM = 1 cm , lấy điểm N trên cạnh AC sao cho AN = 1,5 cm.
a) Chứng minh rằng MN // BC.
b) Gọi I là trung điểm của MN , tia AI cắt BC tại K.
+) CM \(\dfrac{MI}{BK}\)= \(\dfrac{AI}{AK}\)
+) CM K là trung điểm của BC .
c) CM IK , MK và BN đồng quy tại một điểm .
cho tam giác abc vuông tại A kẻ đường cao AH
a)tính bc,hb,hc biết ab=15,ac=20
b)CMR:tam giác CAB= tam giác AHB
c)CMR:AH^2=HB.HC
d)gọi m,n lần lượt là hình chiếu của h lên cạnh ab,ac và i là trung điểm của ah
cmr:m,i,n thẳng hàng
e)cmr:AM.AB=AN.AC
cho tam giác ABC vuông tại A ( AC>AB) từ trung điểm M vẽ cạnh BC kẻ đường thẳng vuông góc BC cắt AC ở I cắt tia BA ở N .
a. chứng minh tam giác ABC đồng dạng tam giác MIC
B. giả sử AB= 5cm, AC=12 cm, tính IM?
C.gọi K là trung điểm của BN đường thẳng qua K vuông góc với BN cắt MN ở O . Chứng minh OM=1/2 NI?
Cho ∆ABC vuông tại A, AB < AC, AH là đường cao.
a) Chứng minh ∆HAC và ∆ABC đồng dạng
b) Chứng minh HA2 = HB. HC
c) Gọi D, E lần lượt là trung điểm của AB, AC. Chứng minh CH. CB = 4 DE?
d) Gọi M là giao điểm của đường thẳng vuông góc với BC tại B và đường thẳng DE. Gọi
N là giao điểm của AH và CM. Chứng minh N là trung điểm của AH.
Cho tam giác ABC vuông tại A, có đường cao AH. Gọi N là hình chiếu của H trên AC. Gọi M là trung điểm của AB, đường thẳng HM cắt đường thẳng AC tại I. Chứng minh HA và HC lần lượt là phân giác trong và phân giác ngoài của tam giác IHN.
Cho tam giác DEF có DI là phân giác của góc D; I thuộc EF, ED=10 cm , DF=6 cm , FI= 4,8 cm. a) Tính EI b) Qua I kẻ đường thẳng song song với DF cắt DE tại M. Tính ME;MD;IM c) Chứng minh: DE/DF = ME/MD d) Gọi N là trung điểm của DF; DI cắt MN tại K; FM cắt IN tại H.Chứng minh: KH//MI
giúp mik câu d với
Cho tam giác ABC vuông tại A (AB<AC), AH đường cao ( H\(\in\)BC)
a. tam giác HBA đồng dạng tam giác ABC
b. AB=15cm, BC=25 cm. HB=?
c. BD//AC (D thuộc AH). chứng minh: HA.HB=HC.HB
d. M là trung điểm BD, N là trung điểm AC. Chứng minh M,H,N thẳng hàng