\(\left|\overrightarrow{AM}\right|=AM=\dfrac{a\sqrt{3}}{2}\)
\(\left|\overrightarrow{AM}\right|=AM=\dfrac{a\sqrt{3}}{2}\)
Cho hình vuông ABCD có độ dài cạnh bằng 6. Gọi M là trung điểm của BC và G là trọng tâm tam giác ADM. Tính độ dài vecto GD
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
GIÚP MÌNH VỚI ẠA
Câu 1 : Cho tam giác ABC đều cạnh bằng 5cm
a) tính độ dài vecto AB trừ cho vecto BC
b) Tính độ dài vecto AB cộng cho vecto AC
Cho lục giác đều ABCDEF tâm O cạnh a. Tính độ dài của các vecto:
a) Vecto DF b) Vecto AI với I là trung điểm của CD
Cho tam giác ABC vuông tại A có AB=3 góc B=60° .Gọi M là điểm thỏa vecto MA + vecto MB= vecto 0. Tính độ dài vecto BM + vecto BC + vecto BA
1) Cho tam giác ABC đều cạnh 5. M là trung điểm BC. I là trung điểm AM. Tính \(\left|\overrightarrow{BI}+\overrightarrow{CI}\right|\)
2) Cho tam giác ABC đều cạnh 7. G là trọng tâm. M là trung điểm AB. Tính \(\left|\overrightarrow{AG}+\overrightarrow{AM}\right|\)
3) Cho ngũ giác đều ABCDE nội tiếp (O). Tính \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}\)
Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng
Cho tam giác ABC có A',B', C' lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh vecto BC' = vecto C'A = vecto A'B".
Cho tam giác đều có cạnh bằng 3, M là trung điểm của BC, G là trọng tâm của tam giác ABC. Khi đó độ dài vectơ bằng với = ....(Nhập kết quả dưới dạng số thập phân thu gọn).