AA1 + BB1 + CC1 = \(\overrightarrow{0}\) khi và chỉ khi G trùng G1
AA1 + BB1 + CC1 = \(\overrightarrow{0}\) khi và chỉ khi G trùng G1
Cho tam giác ABC cố định và G là trọng tâm tam giác. Tập hợp điểm M thỏa \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) vs a<0 là:
A. Trung điểm BC
B. Đường tròn tâm G , bán kính bằng a.
C. Đường tròn tâm G , bán kính bằng \(\dfrac{a}{3}\)
D. Đường tròn tâm M, bán kính bằng \(\dfrac{a}{3}\)
cho tam giác ABC và I thỏa mãn : \(\overrightarrow{IA}-2\overrightarrow{IB}+4\overrightarrow{IC}=\overrightarrow{0}\)
a, phân tích \(\overrightarrow{IA}\) theo \(\overrightarrow{AB};\overrightarrow{AC}\)
b gọi G là trọng tâm tam giác, J thỏa mãn \(\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AB}\)
chứng minh : I,J,G thẳng hàng
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tam giác ABC có trọng tâm G. Gọi E và F là các điểm xác định bởi vecto EA = vecto 2EB, veto 3FA+ veto 2FC= vecto 0. Chứng minh 3 điểm E,F,G thẳng hàng. Giúp em với ạ
Cho ΔABC có trọng tâm từ M là điểm tùy ý. Gọi A1, B1, C1 lần lượt là các điểm đối xứng của M qua các trung điểm I, J, K của các cạnh BC, CA, AB
CM: AA1, BB1, CC1 đồng quy tại trung điểm mỗi đoạn
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN RẤT NHIỀU !!!
cho tam giác ABC có trọng tâm G và 2 điểm M,N sao cho : vecto 3MA+ 4MB = 0 và veco NB-3NC=0 . Chứng minh 3 điểm M, N , G thẳng hàng
Mọi người giúp mình làm với cảm ơn nhìu ạ
Cho hình thoi tâm có cạnh bằng 2a và góc ABC=120 độ . Gọi G là trọng tâm tam giác , tính độ dài của vectơ BG + AD
Cho tam giác ABC có trọng tâm G Chứng minh các VECTƠ a/GA+GB+GC=0 b/ MA+MB+MC=3MG (M là 1 điểm bất kỳ) c/ HA+HB-5HC=0 với H là điểm đối xứng của G qua C