Cho △ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D ∈ AC).Từ C kẻ CE vuông góc với AB (E∈AB)
a,CMR:\(OD=\dfrac{1}{2}BC\)
b,Trên tia đối của tia DE lấy N, trên tia đối của ED lấy M sao cho EM=DN. Chứng minh rằng △OMN là tam giác cân
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC) a) Chứng minh: Tam giác ABH= tam giác ACH b) Lấy điểm D trên tia đối của tia BC sao cho BD=BH, lấy E trên tia đối của tia BA sao cho BE=BA. Chứng minh: DE//AH
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC) a) Chứng minh: Tam giác ABH= tam giác ACH b) Lấy điểm D trên tia đối của tia BC sao cho BD=BH, lấy E trên tia đối của tia BA sao cho BE=BA. Chứng minh: DE//AH Giải giúp mình với ◉‿◉
Cho tam giác ABC vuông tại A biết AB= 3 cm, BC= 5 cm. Trên tia đối của tia AB lấy điểm M sao cho AB=AM
a/ Tính AC
b/ chứng minh: Tam giác ABC= tam giác AMC
c/ Kẻ AH vuông góc với BC tại H và AK vuông góc với MC tại K. Chứng minh BH=BK
d/ chứng minh HK//BM
( vẽ hình cho mik nx nha)
Cho tam giác ABC cân tại A ( AB>BC ).Trên tia đối của tia CA lấy điểm D sao cho CD=CA. Kẻ AH vuông góc BC tại H, kẻ DK vuông góc với đường thẳng BC tại K. Chứng minh : a) Tam giác AHC=tam giác DKC b)KC=1/2 BC c)Trên tia đối của tia BC lấy điểm M và trên tia CD lấy điểm N sao cho BM=CN=AB-BC, CHo biết ^BAC=40độ. Tính ^ANM
Cho tam giác ABC có góc B= góc C
a) CM AB=AC
b ) Tia phân giác của góc B cắt AC ở D. Trên tia BA lấy điểm E sao cho BE=CD. Chứng minh CE là tia phân giác của góc C
c Gọi O là giao điểm của BD và CE chứng minh rằng tia phân giác của góc a đi qua O
cho tam giác abc vuông tại a với ab=15cm và bc =25cm
a.tính độ dài cạnh ac? so sánh góc b và góc c
b.trên tia đối của tia ab lâý điểm d sao cho ab=ad.chuưngs tam giacs abc=tam giacs adc,tưf ddos suy ra tam giác bcd cân
cho tam giác ABC vuông cân tại A. vẽ AH vuông với BC tại H. a) chứng minh góc AHC=góc AHB b) Kẻ HM vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm N sao cho HM=HN c) Chúng minh BN//AC d) Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ