a) Xét ΔACM và ΔBMN có
AM=BM(M là trung điểm của AB)
\(\widehat{AMC}=\widehat{BMN}\)(hai góc đối đỉnh)
CM=MN(gt)
Do đó: ΔAMC=ΔBMN(c-g-c)
b) Ta có: ΔAMC=ΔBMN(cmt)
nên \(\widehat{CAM}=\widehat{NBM}\)(hai góc tương ứng)
mà \(\widehat{CAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB)
nên \(\widehat{NBM}=90^0\)
⇒\(\widehat{NBA}=90^0\)
hay NB⊥AB(đpcm)
c) Xét ΔAMN và ΔBMC có
MA=MB(M là trung điểm của AB)
\(\widehat{AMN}=\widehat{BMC}\)(hai góc đối đỉnh)
MN=MC(gt)
Do đó: ΔAMN=ΔBMC(c-g-c)
⇒AN=BC(hai cạnh tương ứng) và \(\widehat{NAM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{NAM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AN//BC(Dấu hiệu nhận biết hai đường thẳng song song)