Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
linh nguyễn

cho tam giác ABC có đỉnh C nằm ngoài đường tròn(O) tâm O đường kính AB. Biết cạnh CA cắt đường tròn (O) tại điểm D khác , cạnh CB cắt đường tròn (O) tại điểm E khác B. Gọi H là giao điểm của AE và BD.

1/ cm tam giác ABD là tam giác vuông. Cm CH vuông góc với AB.

2/ Gọi F là trung điểm của đoạn CH. Cm DF là tiếp tuyến của đường tròn (O).

Nguyễn Lê Phước Thịnh
10 tháng 12 2020 lúc 22:03

1) Xét (O) có 

ΔDAB nội tiếp đường tròn (O)(Vì D,A,B∈(O))

mà AB là đường kính của (O)(gt)

nên ΔDAB vuông tại D(Định lí)

⇒BD⊥AD tại D

hay BD⊥AC

Xét (O) có 

ΔEAB nội tiếp đường tròn(E,A,B∈(O))

mà AB là đường kính(gt)

nên ΔEAB vuông tại E(Định lí)

⇒AE⊥EB tại E

hay AE⊥BC tại E

Xét ΔCAB có 

BD là đường cao ứng với cạnh AC(cmt)

AE là đường cao ứng với cạnh BC(cmt)

BD\(\cap\)AE={H}

Do đó: H là trực tâm của ΔCAB(Tính chất ba đường cao của tam giác)

⇔CH là đường cao ứng với cạnh AB

hay CH⊥AB(đpcm)


Các câu hỏi tương tự
Haibara Ai
Xem chi tiết
Ánh Ngọc
Xem chi tiết
phạm trần
Xem chi tiết
Quang Tran
Xem chi tiết
ABCXYZ
Xem chi tiết
nguyen thi hoa trinh
Xem chi tiết
Tuấn Anh
Xem chi tiết
Hiệu Nguyễn Huy
Xem chi tiết