Cho tam giác ABC(AB<AC), AD là phân giác trong của góc A. Qua trung điểm E của cạnh BC, vẽ đường thẳng song song với AD, cắt cạnh AC tại F, cắt đường thẳng AB tại G. Chứng minh CF=BG
Cho tam giác cân ABC (AB = AC), đường phân giác góc B cắt AC tại D và cho biết AB = 15 cm, BC = 10 cm (h.19)
a) Tính AD, DC
b) Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E. Tính EC
Cho tam giác ABC vuông tại A , có AB= 6, BC=10. Đường phân giác góc B cắt AC tại D. Tính độ dài AD, DC
Cho tam giác ABC có cạnh AB nhỏ hơn cạnh AC. Đường phân giac AD của góc BAC cắt BC tại D a.Biết BD=4cm.CD=6cm.Tính tỉ số AB/Ac b. Từ D vẽ đường thẳng song song với AB cắt AC tại E. Chứng minh rằng:AE. BC=AB.CD
Cho ΔABC vuông tại A, AB=12cm, AC=16cm; đường phân giác góc A cắt BC tại D.
a) Tính BD,DC.
b) Vẽ đường cao AH, tính AH,HD,AD
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Gọi BD là đường phân giác của tam giác ABC.
a) Tính độ dài DA, DC.
b) Tia phân giác của góc C cắt BD tại I. Gọi M là trung điểm của BC. Chứng minh \(\widehat{BIM}\) = 90o
Tam giác vuông ABC có \(\widehat{A}=90^0;AB=12cm,AC=16cm\). Đường phân giác góc A cắt BC tại D
a) Tính BC, BD và CD
b) Vẽ đường cao AH, tính AH, HD và AD
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH.CD = BD.CH
Bài 3 (3 điểm): Cho ∆ABC có:
Kẻ đường cao AH (H ∈ BC ), tia phân giác góc A cắt BC tại D.
a) Chứng minh ∆HBA đồng dạng với ∆ABC và AB2 = BH.BC
b) Tính độ dài BC, BD và CD.
c) Tính tỉ số diện tích tam giác ABD và tam giác ACD.
d) Từ D kẻ DE vuông góc với AC (E ∈ AC). Tính độ dài đoạn DE.