Ta có: \(BC - AC = 4 - 2 = 2\).
Vậy độ dài cạnh AC lớn hơn 2 hay AC > AB (vì\(AB = 2\)cm).
Ta có: \(BC - AC = 4 - 2 = 2\).
Vậy độ dài cạnh AC lớn hơn 2 hay AC > AB (vì\(AB = 2\)cm).
Bạn Thảo cho rằng tam giác ABC trong Hình 21 có \(AB = 3\)cm, \(BC = 2\)cm, \(AC = 4\)cm.
Quan sát tam giác ABC ở Hình 17.
a) So sánh hai cạnh AB và AC.
b) So sánh góc B (đối diện với cạnh AC) và góc C (đối diện với cạnh AB).
Quan sát tam giác ABC ở Hình 19.
a) So sánh hai góc B và C.
b) So sánh cạnh AB (đối diện với góc C) và cạnh AC (đối diện với góc B).
Có hay không một tam giác mà độ dài ba cạnh của tam giác đó được cho bởi các độ dài trong mỗi trường hợp sau?
a) 8 cm, 5 cm, 3 cm;
b) 12 cm, 6 cm, 6 cm;
c) 15 cm, 9 cm, 4 cm.
a) Cho tam giác DEG có góc E là góc tù. So sánh DE và DG.
b) Cho tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Tìm cạnh nhỏ nhất, cạnh lớn nhất của tam giác MNP.
Cho tam giác MNP có \(MN = 4\)cm, \(NP = 5\)cm, \(MP = 6\) cm. Tìm góc nhỏ nhất, góc lớn nhất của tam giác MNP.
Cho tam giác ABC có góc A tù. Trên cạnh AC lần lượt lấy các điểm D, E, G sao cho D nằm giữa A và E; E nằm giữa D và G; G nằm giữa E và C (Hình 26). Sắp xếp các đoạn thẳng BA, BD, BE, BG, BC theo thứ tự tăng dần. Giải thích vì sao?
Cho tam giác MNP có \(MN = 6\)cm, \(NP = 8\)cm, \(PM = 7\)cm. Tìm góc nhỏ nhất, góc lớn nhất của tam giác MNP.
Con mèo của bạn Huê bị mắc kẹt trên gờ tường cao 4 m. Bác bảo vệ sử dụng một cái thang để đưa mèo xuống giúp bạn Huê. Bác đặt thang dựa vào gờ tường (Hình 24a), khoảng cách từ chân thang đến điểm chạm vào gờ tường là \(AB = 4,5\)m. Hình 24b mô tả hình ảnh chiếc thang dựa vào tường trong Hình 24a. Bạn Huê khẳng định chân thang cách chân tường là \(BH = 0,5\)m. Khẳng định của bạn Huê có đúng không? Vì sao?