Cho tam giác ABC có trọng tâm G, gọi M, N, P lần lượt là trung điểm của BC, CA, AB |
a) Tìm các vectơ bằng vecto MN b) Dựng điểm I sao cho vecto AG bằng vecto PI
c) Tứ giác BGMI là hình gì ?
tam giác ABC đều cạnh a,dựng hình vuông BCMN.Gọi G là trọng tâm tam giác ABC.Tính theo a độ dài vectơ u=vectơ GA+vectơ GB+vectơ GM+vecto GN
Cho tam giác ABC. I là điểm trên cạnh AC sao cho 4 lần vectơ CI + vectơ AC = vectơ 0 và điểm J thỏa mãn vectơ BJ=1/2 vectơAC -2/3vectơ AB. chứng minh 3 điểm I,J,B thẳng hàng
Cho hình bình hành ABCD . Gọi M,N là các điểm thỏa vectơ AM =2/3 AD , vectơ = 1/4BC . Gọi G là trọng tâm của tam giác CMN . Phân tích AG theo AB ,AD
Bài 1. Cho 4 điểm A, B, C, D. Gọi M, N lần lượt là trung điểm của AD và BC.
a/ Chứng minh rằng vectoMN = 1/2(vectoAB + vecto CD).
b/. Gọi O là điểm trên đoạn MN thỏa OM=2ON. Chứng minh rằng: vectoOA - 2vectoOB -2vectoOC +vectoOD = vceto 0
Bài 2. Cho tam giác ABC có O, G, H lần lượt là tâm đường tròn ngoại tiếp, trọng tâm va trực tâm tam giác.
a/. Gọi D là điểm đối xứng của A qua O. Chứng minh rằng tứ giác BHCD là hình bình hành.
b/. Chứng minh rằng vectoHA + vectoHB + vectoHC = 2vectoHO
vectoOA + vectoOB + vectoOC = vectoOH
c/. Chứng minh rằng ba điểm O, G, H thẳng hàng
Ai biết giải giúp em với^^
Cho ABC nội tiếp (O) và trực tâm H. Kẻ đường kính AD a) Chứng minh rằng BHCD là hình hành b) Gọi E là điểm đối xứng của H qua O. Chứng minh rằng vecto HA + HB + HC = Vecto HE
Cho tam giác DEF. Gọi M,N,P lần lượt là trung điểm DE,EF, FD a/ chứng minh các vectơ EP=EM+EN b/ vectơ ME+NF+PD=0 c/ vectơ DN+EP+FM=0
Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Tính tổng các vectơ
AM + BN + CP
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Nối AF và CE, 2 đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh vectơ DM = vectơ MN = vectơ NB.