Bài 4: ( 4,00 điểm) Cho tam giác ABC có , trên cạnh CB lấy điểm D sao cho CD = CA. Tia phân giác của cắt AB tại E.
a) Chứng minh ACE = DCE. So sánh các độ dài EA và ED.
b) Chứng minh
Chứng minh tia phân giác của góc BED vuông góc với EC
Cho tam giác ABC vuông tại A AB bé hơn AC tia phân giác của góc ABC cắt AC tại D. lấy điểm E trên cạnh BC sao cho be = AB. a) chứng minh tam giác ABD bằng tam giác ABD. b) Chứng minh DE vuông góc với AC. c) tia ED cắt BA tại M chứng minh EC = AM
Cho tam giác ABC vuông tại A. Tia phân giác BD của góc B. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) So sánh các đoạn thẳng AD và DE.
b) Chứng minh: AE vuông góc BD
c) Đường thẳng đi qua C và vuông góc với tia BD cắt tia BA tại F. Chứng minh: tam giác BFC cân và F; D; E thẳng hàng.
cho tam giác ABC có góc a bằng 90 độ. gọi M là trung điểm của AC. trên tia đối của tia MB lấy điểm D sao cho MB = MD.
a, chứng minh rằng tam giác ABM bằng tam giác CDM.
b, chứng minh DC vuông góc với AC, từ đó chứng minh AB song song với CD
c, lấy K là trung điểm của BC .trên tia AK lấy điểm E sao cho K là trung điểm của AE. chứng minh rằng C là trung điểm của DE.
Bài 1: Cho tam giác ABC có góc B = C . Vẽ tia phân giác của góc B cắt AC tại E, tia phân giác của góc C cắt AB tại D
a) Chứng minh BE = CD.
b) Gọi giao của BE và CD là O. Chứng minh OB = OC, OD = OE.
c) Chứng minh AO vuông góc với BC
Cho tam giác ABC có A=90, trên tia đối của tia CA lấy điểm D sao cho CD=CA, trên tia đối của CB lấy điểm E sao cho CE=Cb
a. Tính số đo góc CDE
b. Chứng minh AB//DE
c. Chứng minh ABC//DEC
Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho BM=AB.
Vẽ tia phân giác BD ( D thuộc cạnh AC ) của góc B, BD cắt AM tại H. Chứng minh rằng :
a) ∆ABH=∆MBH
b) Tia DB là tia phân giác của góc ADM
c) Kéo dài DM cắt AB tại k. Chứng minh AK=MC và BD vuông góc CK.
Cho tam giác ABC có góc A bằng 90 độ Trên tia đối của tia CA lấy điểm e k = cd trên tia đối của CB lấy điểm s và c s = c b Chứng minh góc ACB bằng tam giác ABC và tính số đo AFF